Anthropogenic Heat Flux Estimation Based on Luojia 1-01 New Nighttime Light Data: A Case Study of Jiangsu Province, China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Satellite Data
2.3. Remote Sensing Data Processing
2.4. Calculation of the AHF Spatial Estimation Indexes
2.5. Estimation of the AHF of Administrative Unit Based on Statistics Data
2.6. Construction and Verification of the AHF Spatial Estimation Models
3. Results
3.1. Determination and Verification of the Best AHF Spatial Estimation Models
3.2. Analysis the Gridded AHF Mapping Results
3.3. Validation of AHF Estimation Results
4. Discussion
5. Conclusions
- (1)
- AHF can be effectively estimated by using Luojia 1-01 NTL data. Among the three indexes used in this study, NTLnor, HSI (or HSI-water,) and VANUI, the VANUI has the most significant correlation with annual mean AHF based on statistics data (AHFsta) of county-level cities in Jiangsu, and AHF spatial estimation model based on its power function has the highest accuracy.
- (2)
- From the estimation results of AHF mapping, the annual mean AHF of Jiangsu in 2018 was 2.91 W·m−2. In terms of the AHF spatial distribution, the higher AHF values are obviously concentrated in the cities in southern Jiangsu, such as Suzhou, Wuxi, Changzhou, and Nanjing, while the AHF in the northern cities was lower. The concentration of higher AHF is closely related to the level of regional economic development and population density.
- (3)
- Compared with Suomi-NPP/VIIRS, Luojia 1-01 NTL data with finer spatial resolution and has more potentials in distinguishing AHF in urban areas from different land use and land cover types. This ability to discriminate the spatial detail of AHF will contribution to the precise management of urban or regional anthropogenic heat emissions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Imhoff, S.M.; Zhang, P.Z.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 10 May 2020).
- Oke, T.R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Block, A.; Keuler, K.; Schaller, E. Impacts of anthropogenic heat on regional climate patterns. Geophys. Res. Lett. 2004, 31, L12211. [Google Scholar] [CrossRef]
- Pal, S.; Xueref-Remy, I.; Ammoura, L.; Chazette, P.; Gibert, F.; Royer, P.; Dieudonné, E.; Dupont, J.-C.; Haeffelin, M.; Lac, C.; et al. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity. Atmos. Environ. 2012, 63, 261–275. [Google Scholar] [CrossRef]
- Hu, Z.B.; Yu, B.F.; Chen, Z.; Li, T.T.; Liu, M. Numerical investigation on the urban heat island in an entire city with an urban porous media model. Atmos. Environ. 2012, 47, 509–518. [Google Scholar] [CrossRef]
- Iamarino, M.; Beevers, S.; Grimmond, C.S.B. High-resolution (space, time) anthropogenic heat emissions: London 1970–2025. Int. J. Climatol. 2012, 32, 1754–1767. [Google Scholar] [CrossRef] [Green Version]
- Torrance, K.E.; Shun, J.S.W. Time-varying energy consumption as a factor in urban climate. Atmos. Environ. 1976, 10, 329–337. [Google Scholar] [CrossRef]
- Ichinose, T.; Shimodozono, K.; Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 1999, 33, 3897–3909. [Google Scholar] [CrossRef]
- Bohnenstengel, S.I.; Hamilton, I.; Davies, M.; Belcher, S.E. Impact of anthropogenic heat emissions on London’s temperatures. Q. J. R. Meteorol. Soc. 2014, 140, 687–698. [Google Scholar] [CrossRef]
- Wang, S.S.; Hu, D.Y.; Chen, S.S.; Yu, C. A partition modeling for anthropogenic heat flux mapping in China. Remote Sens. 2019, 11, 1132. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G. Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett. 2009, 36, L02801. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Coscieme, L.; Pulselli, F.M.; Bastianoni, S.; Elvidge, C.D.; Anderson, S.; Sutton, P.C. A thermodynamic geography: Night-time satellite imagery as a proxy measure of emergy. Ambio 2014, 43, 969–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.Y.; Weng, Q.H.; Gurney, K.R.; Shuai, Y.M.; Hu, X.F. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use. ISPRS J. Photogramm. Remote Sens. 2012, 67, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, W.M.; Zhang, N.; He, X.F.; Zhou, R.W. Numerical simulation of the anthropogenic heat effect on urban boundary layer structure. Theor. Appl. Climatol. 2009, 97, 123–134. [Google Scholar] [CrossRef]
- Chen, B.; Shi, G.Y.; Wang, B.; Zhao, J.Q.; Tan, S.C. Estimation of the anthropogenic heat release distribution in China from 1992 to 2009. Acra Meteorol. Sin. 2012, 26, 507–515. [Google Scholar] [CrossRef]
- Weng, Q.H.; Lu, D.S.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Weng, Q.H.; Lu, D.S.; Liang, B.Q. Urban surface biophysical descriptors and land surface temperature variations. Photogramm. Eng. Remote Sens. 2006, 72, 1275–1286. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S.; Tian, H.Q.; Zhou, G.M.; Ge, H.L. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Chen, S.S.; Hu, D.Y. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data. Remote Sens. 2017, 9, 1165. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.P.; Wu, J.J.; Yang, X.C.; Qi, J.G. Spatialization of anthropogenic heat using multi-sensor remote sensing data: A case study of Zhejiang Province, East China. China Environ. Sci. 2016, 36, 314–320. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Schaaf, C.; Seto, K.C. The Vegetation Adjusted NTL Urban Index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.J.; Long, T.F.; Guo, H.X.; Yin, R.Y.; Leng, W.C.; Liu, H.C.; Wang, G.Z. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [Green Version]
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing. The Luojia-1A Scientific Experimental Satellite Was Successfully Launched. Available online: http://www.lmars.whu.edu.cn/index.php/en/research/2169.html (accessed on 15 May 2020).
- Wang, C.X.; Chen, Z.Q.; Yang, C.S.; Li, Q.X.; Wu, Q.S.; Wu, J.P.; Zhang, G.; Yu, B.L. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101989. [Google Scholar] [CrossRef]
- Jiangsu Provincial Bureau of Statistics. Jiangsu Statistical Yearbook-2019. Available online: http://tj.jiangsu.gov.cn/2019/indexc.htm (accessed on 15 May 2020).
- Gong, P.; Liu, H.; Zhang, M.N.; Li, C.C.; Wang, J.; Huang, H.B.; Nicholas, C.; Ji, L.Y.; Li, W.Y.; Bai, Y.Q.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.Y.; Wu, Z.F.; Kuang, Y.Q.; Huang, N.S. Correction of DMSP/OLS night-time light images and its application in China. J. Geo-inf. Sci. 2015, 17, 1092–1102. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat 8 (L8) Data Users Handbook (Version 2.0). Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 2 May 2020).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 1 January 1974; pp. 309–317. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J.F. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Yue, W.Z.; Gao, J.B.; Yang, X.C. Estimation of gross domestic product using multi-sensor remote sensing data: A case study in Zhejiang Province, East China. Remote Sens. 2014, 6, 7260–7275. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, C.S.B. The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. Int. J. Climatol. 1992, 12, 481–497. [Google Scholar] [CrossRef]
- Chen, S.S.; Hu, D.Y.; Wong, M.S.; Ren, H.Z.; Cao, S.S.; Yu, C.; Ho, H.C. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing-Tianjin-Hebei region in China. Environ. Pollut. 2019, 249, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.H.; Wang, Y.N.; Chen, L.D. A distributed model for quantifying temporal-spatial patterns of anthropogenic heat based on energy consumption. J. Clean. Prod. 2018, 170, 601–609. [Google Scholar] [CrossRef]
- Dong, Y.; Varquez, A.C.G.; Kanda, M. Global anthropogenic heat flux database with high spatial resolution. Atmos. Environ. 2017, 150, 276–294. [Google Scholar] [CrossRef]
- Quah, A.K.L.; Roth, M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos. Environ. 2012, 46, 92–103. [Google Scholar] [CrossRef]
- Yang, L.J.; Xu, H.Q.; Jin, Z.F. Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model. J. Clean. Prod. 2019, 227, 472–482. [Google Scholar] [CrossRef]
- Offerle, B.; Grimmond, C.S.B.; Fortuniak, K. Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int. J. Climatol. 2005, 25, 1405–1419. [Google Scholar] [CrossRef]
- Yang, W.M.; Chen, B.; Cui, X.F. High-resolution mapping of anthropogenic heat in China from 1992 to 2010. Int. J. Environ. Res. Public Health 2014, 11, 4066–4077. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.; Lindberg, F.; Grimmond, C.S.B. Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol. 2011, 31, 1990–2005. [Google Scholar] [CrossRef]
- Xie, M.; Liao, J.B.; Wang, T.J.; Zhu, K.G.; Zhuang, B.L.; Han, Y.; Li, M.M.; Li, S. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China. Atmos. Chem. Phys. 2016, 16, 6071–6089. [Google Scholar] [CrossRef] [Green Version]
- Li, X.C.; Zhou, Y.Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
Indexes | Functions | AHF Spatial Estimation Models | R2 | p |
---|---|---|---|---|
NTLnor | Linear | y = 1020.5049 x − 2.3789 | 0.6690 | 0.000 |
Quadratic polynomial | y = 2023.8957 x2 + 912.2377 x − 1.8133 | 0.6703 | 0.000 | |
Exponential | y = 1.5767 e76.5868 x | 0.7595 | 0.000 | |
Logarithmic | y = 9.2545 ln(x) + 56.6676 | 0.3944 | 0.000 | |
power | y = 480.6051 x0.9436 | 0.8370 | 0.000 | |
HSI | Linear | y = 34.1123 x − 6.1785 | 0.1170 | 0.001 |
Quadratic polynomial | y = −103.2869 x2 + 153.0525 x − 35.4743 | 0.1979 | 0.000 | |
Exponential | y = 0.9847 e2.9827 x | 0.1803 | 0.000 | |
Logarithmic | y = 18.9390 ln(x) + 25.5896 | 0.1474 | 0.000 | |
power | y = 17.7673 x1.7857 | 0.2641 | 0.000 | |
VANUI | Linear | y = 1538.4800 x − 2.0793 | 0.6889 | 0.000 |
Quadratic polynomial | y = 3252.9998 x2 + 1419.2199 x − 1.6735 | 0.6896 | 0.000 | |
Exponential | y = 1.6461 e112.5489 x | 0.7432 | 0.000 | |
Logarithmic | y = 9.2084 ln(x) + 60.7723 | 0.4103 | 0.000 | |
power | y = 696.2097 x0.9304 | 0.8444 | 0.000 |
AHF Grades (W·m−2) | 0–5 | 5–10 | 10–15 | 15–20 | 20–30 | 30–50 | 50–100 | >100 |
Contribution Rate (%) | 87.21 | 4.19 | 2.47 | 1.76 | 2.25 | 1.60 | 0.45 | 0.07 |
This Study | Previous Results | |
---|---|---|
AHF (W·m−2) (Study Year) | AHF (W·m−2) (Study Year) | References |
2.91 (2018) | 0.68 (1990); 0.94 (1995); 0.99 (2000); 1.83 (2005); 2.61 (2010) | Xie et al. (2016) [46] |
2.32 (2008) | Chen et al. (2012) [18] | |
2.81 (2016) | Wang et al. (2019) [12] |
Land Use Types | Average AHF Values (W·m−2) |
---|---|
Urban commercial areas | 129.04 |
Large municipal public facility areas | 114.57 |
Urban main roads | 63.40 |
Urban residential areas | 29.98 |
Villages and suburban residential areas | 11.68 |
Index | Function | AHF Spatial Estimation Model | R2 | p |
---|---|---|---|---|
HSI-water | Linear | y = 128.8516 x − 35.0518 | 0.4755 | 0.000 |
Quadratic polynomial | y = 789.8687 x2 − 466.2848 x + 69.4359 | 0.6672 | 0.000 | |
Exponential | y = 0.0790 e11.2600 x | 0.7019 | 0.000 | |
Logarithmic | y = 41.8538 ln(x) + 55.3212 | 0.3960 | 0.000 | |
power | y = 300.5217 x3.9687 | 0.7177 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Xu, H. Anthropogenic Heat Flux Estimation Based on Luojia 1-01 New Nighttime Light Data: A Case Study of Jiangsu Province, China. Remote Sens. 2020, 12, 3707. https://doi.org/10.3390/rs12223707
Lin Z, Xu H. Anthropogenic Heat Flux Estimation Based on Luojia 1-01 New Nighttime Light Data: A Case Study of Jiangsu Province, China. Remote Sensing. 2020; 12(22):3707. https://doi.org/10.3390/rs12223707
Chicago/Turabian StyleLin, Zhongli, and Hanqiu Xu. 2020. "Anthropogenic Heat Flux Estimation Based on Luojia 1-01 New Nighttime Light Data: A Case Study of Jiangsu Province, China" Remote Sensing 12, no. 22: 3707. https://doi.org/10.3390/rs12223707
APA StyleLin, Z., & Xu, H. (2020). Anthropogenic Heat Flux Estimation Based on Luojia 1-01 New Nighttime Light Data: A Case Study of Jiangsu Province, China. Remote Sensing, 12(22), 3707. https://doi.org/10.3390/rs12223707