Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.3. Data Analysis
3. Results
3.1. The Spatio-Temporal Variability of Chl-a Concentration in the Coastal Zone of the SE Baltic Sea
3.2. The Importance of Environmental Factors on the Variation of Chl-a Concentration During Coastal Upwelling
3.3. A Detailed Case Study of the Upwelling event in the Summer of 2008
3.4. The Influence of Upwelling on the Chl-a Concentration of the Curonian Lagoon
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Savchuk, O.P. Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 2018, 5, 5. [Google Scholar] [CrossRef]
- HELCOM. HELCOM Thematic Assessment of Eutrophication 2011–2016. Baltic Sea Environment Proceedings No.156. 2018. Available online: http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/ (accessed on 3 June 2020).
- HELCOM. The Fourth Baltic Sea Pollution Load Compilation (PLC-4). Baltic Sea Environment Proceedings No. 93. Helsinki Commission; HELCOM: Helsinki, Finland, 2004; 188p. [Google Scholar]
- Schernewski, G.; Neumann, T. The trophic state of the Baltic Sea a century ago: A model simulation study. J. Mar. Syst. 2005, 53, 109–124. [Google Scholar] [CrossRef]
- Savchuk, O.P.; Wulff, F.; Hille, S.; Humborg, C.; Pollehne, F. The Baltic Sea a century ago—A reconstruction from model simulations, verified by observations. J. Mar. Syst. 2008, 74, 485–494. [Google Scholar] [CrossRef]
- HELCOM. Eutrophication in the Baltic Sea—An Integrated Thematic Assessment of Eutrophication in the Baltic Sea Region. Baltic Sea Environmental Proceedings No. 115B. Helsinki Commission; HELCOM: Helsinki, Finland, 2009; 148p. [Google Scholar]
- Myrberg, K.; Korpinen, S.; Uusitalo, L. Physical oceanography sets the scene for the Marine Strategy Framework Directive implementation in the Baltic Sea. Mar. Policy 2019, 107, 103591. [Google Scholar] [CrossRef]
- Matarrese, R.; Chiaradia, M.; De Pasquale, V.; Pasquariello, G. Chlorophyll-a concentration measure in coastal waters using MERIS and MODIS data. In Proceedings of the IGARSS’04 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AL, USA, 20–24 September 2004; Volume 6, pp. 3639–3641. [Google Scholar]
- Zhang, H.; Qiu, Z.; Sun, D.Y.; Wang, S.; He, Y. Seasonal and Interannual Variability of Satellite-Derived Chlorophyll-a (2000–2012) in the Bohai Sea, China. Remote Sens. 2017, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Spyrakos, E.; Vilas, L.G.; Palenzuela, J.M.T.; Barton, E.D. Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): Application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle. Remote Sens. Environ. 2011, 115, 2471–2485. [Google Scholar] [CrossRef] [Green Version]
- Nieto, K.; Mélin, F. Variability of chlorophyll-a concentration in the Gulf of Guinea and its relation to physical oceanographic variables. Prog. Oceanogr. 2017, 151, 97–115. [Google Scholar] [CrossRef]
- Pinochet, A.; Garcés-Vargas, J.; Lara, C.; Olguin, F. Seasonal Variability of Upwelling off Central-Southern Chile. Remote Sens. 2019, 11, 1737. [Google Scholar] [CrossRef] [Green Version]
- Nômmann, S.; Sildam, J.; Nôges, T.; Kahru, M. Plankton distribution during a coastal upwelling event off Hiiumaa, Baltic Sea: Impact of short-term flow field variability. Cont. Shelf Res. 1991, 11, 95–108. [Google Scholar] [CrossRef]
- Laanemets, J.; Kononen, K.; Pavelson, J.; Poutanen, E.-L. Vertical location of seasonal nutriclines in the western Gulf of Finland. J. Mar. Syst. 2004, 52, 1–13. [Google Scholar] [CrossRef]
- Lips, I.; Lips, U. Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July-August 2006. J. Plankton Res. 2010, 32, 1269–1282. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, S.; Ebert, K.; Sørensen, K. Monitoring the Bio-optical State of the Baltic Sea Ecosystem with Remote Sensing and Autonomous In Situ Techniques. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 407–435. ISBN 978-3-642-17220-5. [Google Scholar]
- Dabuleviciene, T.; Kozlov, I.E.; Vaiciūtė, D.; Dailidienė, I. Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment. Remote Sens. 2018, 10, 1752. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.I.; Mustard, J.F. High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote Sens. Environ. 2004, 90, 293–307. [Google Scholar] [CrossRef]
- Krężel, A.; Szymanek, L.; Kozłowski, Ł.; Szymelfenig, M. Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea. Oceanologia 2005, 47, 433–452. [Google Scholar]
- Kanoshina, I.; Lips, U.; Leppänen, J.-M. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2003, 2, 29–41. [Google Scholar] [CrossRef]
- Vahtera, E. The Role of Phosphorus as A Regulator of Bloom-Forming Diazotrophic Cyanobacteria in the Baltic Sea. Ph.D. Thesis, Finish Institute of Marine Research, Helsinki, Finland, 2007. ISBN 978-952-10-4193-8. [Google Scholar]
- Kononen, K.; Huttunen, M.; Hällfors, S.; Gentien, P.; Lunven, M.; Huttula, T.; Laanemets, J.; Lilover, M.; Pavelson, J.; Stips, A. Development of a deep chlorophyll maximum of Heterocapsa triquetra Ehrenb. at the entrance to the Gulf of Finland. Limnol. Oceanogr. 2003, 48, 594–607. [Google Scholar] [CrossRef]
- Vahtera, E.; Laanemets, J.; Pavelson, J.; Huttunen, M.; Kononen, K. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J. Mar. Syst. 2005, 58, 67–82. [Google Scholar] [CrossRef]
- Gidhagen, L. Coastal upwelling in the Baltic Sea—Satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling. Estuar. Coast. Shelf Sci. 1987, 24, 449–462. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K.; Höflich, K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanology 2012, 54, 369–393. [Google Scholar] [CrossRef] [Green Version]
- Leppäranta, M.; Myrberg, A.P.K. Physical Oceanography of the Baltic Sea; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kozlov, I.E.; Dailidienė, I.; Korosov, A.; Klemas, V.; Mingėlaitė, T. MODIS-based sea surface temperature of the Baltic Sea Curonian Lagoon. J. Mar. Syst. 2014, 129, 157–165. [Google Scholar] [CrossRef]
- Zemlys, P.; Ferrarin, C.; Umgiesser, G.; Gulbinskas, S.; Bellafiore, D. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci. 2013, 9, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, M.; Ameryk, A.; Szymelfenig, M. Primary production and chlorophyll a concentration during upwelling events along the Hel Peninsula (the Baltic Sea). Oceanol. Hydrobiol. Stud. 2005, 34 (Suppl. 2), 97–113. [Google Scholar]
- Kuvaldina, N.; Lips, I.; Lips, U.; Liblik, T. The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf of Finland, Baltic Sea. Hydrobiology 2009, 639, 221–230. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K. Upwelling in the Baltic Sea—A review. J. Mar. Syst. 2008, 74, S3–S12. [Google Scholar] [CrossRef]
- Vaiciute, D. Distribution Patterns of Optically Active Components and Phytoplankton in the Estuarine Plume in the South Eastern Baltic Sea. Ph.D. Thesis, Klaipeda University, Klaipeda, Lithuania, 2012; 128p. [Google Scholar]
- Zemlys, P.; Ertürk, A.; Razinkovas, A. 2D finite element ecological model for the Curonian lagoon. Hydrobiology 2008, 611, 167–179. [Google Scholar] [CrossRef]
- Dailidienė, I.; Davulienė, L. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984–2005. J. Mar. Syst. 2008, 74, S20–S29. [Google Scholar] [CrossRef]
- Olenina, I.; Olenin, S. Environmental Problems of the South-Eastern Baltic Coast and the Curonian Lagoon. In Baltic Coastal Ecosystems; Schernewski, G., Schiewer, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 149–156. [Google Scholar]
- Gasiūnaitė, Z.; Cardoso, A.; Heiskanen, A.-S.; Henriksen, P.; Kauppila, P.; Olenina, I.; Pilkaitytė, R.; Purina, I.; Razinkovas, A.; Sagert, S.; et al. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. Estuar. Coast. Shelf Sci. 2005, 65, 239–252. [Google Scholar] [CrossRef]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon. In Ecology of Baltic Coastal Waters; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 197–215. ISBN 978-3-540-73524-3. [Google Scholar]
- Kozlov, I.E.; Kudryavtsev, V.N.; Johannessen, J.A.; Chapron, B.; Dailidienė, I.; Myasoedov, A. ASAR imaging for coastal upwelling in the Baltic Sea. Adv. Space Res. 2012, 50, 1125–1137. [Google Scholar] [CrossRef]
- Uiboupin, R.; Laanemets, J. Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea. Boreal Environ. Res. 2009, 14, 297–304. [Google Scholar]
- Gurova, E.; Lehmann, A.; Ivanov, A. Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis. Oceanologia 2013, 55, 687–707. [Google Scholar] [CrossRef] [Green Version]
- Delpeche-Ellmann, N.; Mingelaitė, T.; Soomere, T. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea. J. Mar. Syst. 2017, 171, 21–30. [Google Scholar] [CrossRef]
- Brown, O.B.; Minnett, P.J. MODIS Infrared Sea Surface Temperature Algorithm; Tech. Report ATBD25, FL 33149–1098; University of Miami: Coral Gables, FL, USA, 1999. [Google Scholar]
- NASA OceanColor Website. Available online: https://oceancolor.gsfc.nasa.gov/ (accessed on 3 June 2020).
- Myrberg, K.; Andrejev, O. Main upwelling regions in the Baltic Sea—A statistical analysis based on three-dimensional modelling. Boreal Environ. Res. 2003, 8, 97–112. [Google Scholar]
- Fomferra, N.; Brockmann, C. The BEAM Project Web Page; Brockmann Consult: Hamburg, Germany, 2003; Available online: http://www.brockmann-consult.de/beam/ (accessed on 6 February 2013).
- Schroeder, T.; Schaale, M.; Fischer, J. Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for BEAM. Int. J. Remote Sens. 2007, 28, 5627–5632. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Pilkaityte, R.; Bartoli, M.; Razinkovas, A. In situ measurements and satellite remote sensing of case 2 waters: First results from the Curonian Lagoon. Oceanology 2010, 52, 197–210. [Google Scholar] [CrossRef]
- Bresciani, M.; Adamo, M.; De Carolis, G.; Matta, E.; Pasquariello, G.; Vaiciūtė, D.; Giardino, C. Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sens. Environ. 2014, 146, 124–135. [Google Scholar] [CrossRef]
- INFORM. INFORM Prototype/Algorithm Validation Report Update. D5.15. 2016, p. 140. Available online: http://inform.vgt.vito.be/files/documents/INFORM_D5.15_v1.0.pdf (accessed on 5 November 2018).
- Pfeifroth, U.; Kothe, S.; Müller, R.; Trentmann, J.; Hollmann, R.; Fuchs, P.; Werscheck, M. Surface Radiation Data Set—Heliosat (SARAH)—Edition 2, Satellite Application Facility on Climate Monitoring. CM SAF 2017. [Google Scholar] [CrossRef]
- Baba, K.; Renwick, J. Aspects of intraseasonal variability of Antarctic sea ice in austral winter related to ENSO and SAM events. J. Glaciol. 2017, 63, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Manikandan, S. Measures of central tendency: Median and mode. J. Pharmacol. Pharmacother. 2011, 2, 214–215. [Google Scholar] [CrossRef] [Green Version]
- Boeuf, B.; Fritsch, O. Studying the implementation of the Water Framework Directive in Europe: A meta-analysis of 89 journal articles. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Vaičiūtė, D.; Bučas, M.; Bresciani, M.; Dabulevičienė, T.; Gintauskas, J.; Mėžinė, J.; Tiškus, E.; Umgiesser, G.; Morkūnas, J.; De Santi, F.; et al. Hot moments and Hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis. Manuscript submitted for publication.
- Haapala, J. Upwelling and its Influence on Nutrient Concentration in the Coastal Area of the Hanko Peninsula, Entrance of the Gulf of Finland. Estuar. Coast. Shelf Sci. 1994, 38, 507–521. [Google Scholar] [CrossRef]
- Nowacki, J.; Matciak, M.; Szymelfenig, M.; Kowalewski, M. Upwelling characteristics in the Puck Bay (the Baltic Sea). Oceanol. Hydrobiol. Stud. 2009, 38, 3–16. [Google Scholar] [CrossRef]
- Laanemets, J.; Vali, G.; Zhurbas, V.; Elken, J.; Lips, I.; Lips, U. Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006. Boreal Environ. Res. 2011, 16 (Suppl. A), 15–26. [Google Scholar]
- Lévy, M. The Modulation of Biological Production by Oceanic Mesoscale Turbulence. In Transport and Mixing in Geophysical Flows: Creators of Modern Physics; Weiss, J.B., Provenzale, A., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 744, pp. 219–261. ISBN 978-3-540-75215-8. [Google Scholar]
- Sproson, D.; Sahlée, E. Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 563. [Google Scholar] [CrossRef]
- Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 1992, 82, 1–12. [Google Scholar] [CrossRef]
- Klisch, E.; Hader, D. Effects of solar radiation on phytoplankton. Recent Res. Devel. Photochem. Photobiol. 1999, 3, 113–121. [Google Scholar]
- Hieronymus, J.; Eilola, K.; Hieronymus, M.; Meier, H.E.M.; Saraiva, S.; Karlson, B. Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: A wavelet analysis. Biogeosciences 2018, 15, 5113–5129. [Google Scholar] [CrossRef] [Green Version]
- Uiboupin, R.; Laanemets, J.; Sipelgas, L.; Raag, L.; Lips, I.; Buhhalko, N. Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) using remote sensing and in situ data. Oceanologia 2012, 54, 395–419. [Google Scholar] [CrossRef] [Green Version]
- Pilkaityte, R.; Razinkovas, A. Factors Controlling Phytoplankton Blooms in a Temperate Estuary: Nutrient Limitation and Physical Forcing. Hydrobiology 2006, 555, 41–48. [Google Scholar] [CrossRef]
- Krevs, A.; Koreiviene, J.; Paskauskas, R.; Sulijiene, R. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transit. Waters Bull. 2007, 1, 17–26. [Google Scholar] [CrossRef]
- Kowalewski, M. The influence of the Hel upwelling (Baltic Sea) on nutrient concentrations and primary production—The results of an ecohydrodynamic model. Oceanologia 2005, 47, 567–590. [Google Scholar]
- Väli, G.; Zhurbas, V.; Laanemets, J.; Elken, J. Simulation of nutrient transport from different depths during an upwelling event in the Gulf of Finland. Oceanologia 2011, 53, 431–448. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, E.; Orasi, A.; Morucci, S.; Colella, S.; Inghilesi, R.; Bignami, F.; Santoleri, R. How can operational oceanography products contribute to the European Marine Strategy Framework Directive? The Italian case. J. Oper. Oceanogr. 2016, 9, s18–s32. [Google Scholar] [CrossRef]
- Schernewski, G.; Baltranaitė, E.; Kataržytė, M.; Balčiūnas, A.; Čerkasova, N.; Mėžinė, J. Establishing new bathing sites at the Curonian Lagoon coast: An ecological-social-economic assessment. J. Coast. Conserv. 2017, 23, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Inácio, M.; Schernewski, G.; Nazemtseva, Y.; Baltranaitė, E.; Friedland, R.; Benz, J. Ecosystem services provision today and in the past: A comparative study in two Baltic lagoons. Ecol. Res. 2018, 33, 1255–1274. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Orlandi, M.; Silvio Marzano, F.; Cimini, D. Remote sensing of water quality indexes from Sentinel-2 imagery: Development and validation around Italian river estuaries. EGUGA 2018, 20, 19808. [Google Scholar]
- Ferreira, J.G.; Andersen, J.H.; Borja, A.; Bricker, S.B.; Camp, J.; Da Silva, M.C.; Garcés, E.; Heiskanen, A.-S.; Humborg, C.; Ignatiades, L.; et al. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 2011, 93, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Fisher, T.R.; Trentacoste, E.M.; Buchanan, C.; Gustafson, A.B.; Karrh, R.; Murphy, R.R.; Keisman, J.; Wu, C.; Tian, R.; et al. Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management. Water Res. 2020, 188, 116407. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water 2020, 12, 510. [Google Scholar] [CrossRef] [Green Version]
WFD Classes | Chl-a in the Coastal Waters of the SE Baltic Sea, mg m−3 | Chl-a in the Curonian Lagoon, mg m−3 |
---|---|---|
Excellent (reference conditions) | <2.0 | <26.4 |
High | 2.0–2.4 | 26.5–31.7 |
Good | 2.5–4.8 | 31.8–46.6 |
Moderate | 4.9–7.1 | 46.7–67.0 |
Poor | 7.2–9.5 | 67.1–91.9 |
Bad | >9.5 | >91.9 |
Upwelling Duration | Date | Upwelling Zone | Reference Zone | Upwelling Zone | Reference Zone | t Value | Df | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
yy mm dd | mm dd | SST, °C | SST, °C | Chl-a, mg m−3 | Chl-a, mg m−3 | ||||||
2004 05 12–17 | 05 13 | 4.85 | ±0.75 | 9.68 | ±0.59 | 2.51 | ±0.96 | 3.93 | ±1.09 | 11.21 | 38.97 |
05 14 | 4.16 | ±0.71 | 9.35 | ±0.56 | 0.69 | ±0.66 | 1.26 | ±0.40 | 6.86 | 35.79 | |
05 16 | 5.56 | ±0.69 | 9.34 | ±0.49 | 1.66 | ±0.79 | 2.50 | ±0.73 | 11.05 | 55.57 | |
05 17 | 7.98 | ±0.21 | 13.13 | ±0.87 | 1.12 | ±0.76 | 2.00 | ±2.44 | 3.65 | 51.23 | |
2005 06 09–10 | 06 09 | 8.59 | ±1.32 | 13.36 | ±0.43 | 3.26 | ±1.59 | 4.08 | ±1.35 | 3.95 | 52.07 |
2005 06 18–21 | 06 19 | 11.10 | ±0.96 | 15.82 | ±0.35 | 2.62 | ±0.88 | 4.64 | ±2.74 | 3.14 | 47.65 |
2006 05 07–11 | 05 08 | 6.56 | ±0.67 | 8.46 | ±0.38 | 1.98 | ±0.59 | 2.70 | ±1.00 | 5.06 | 31.55 |
2006 06 14–17 | 06 16 | 11.52 | ±1.06 | 15.37 | ±0.56 | 1.88 | ±0.42 | 2.03 | ±0.46 | 0.15 | 54.60 * |
2006 07 01–03 | 07 01 | 17.40 | ±0.54 | 20.94 | ±0.34 | 2.08 | ±0.57 | 3.61 | ±0.58 | 15.80 | 49.53 |
07 02 | 17.01 | ±0.88 | 21.04 | ±0.48 | 2.52 | ±0.83 | 4.05 | ±1.12 | 8.99 | 49.13 | |
2007 06 07–17 | 06 07 | 14.96 | ±1.24 | 18.70 | ±0.45 | 1.90 | ±0.94 | 2.17 | ±0.62 | 4.03 | 52.08 |
06 11 | 14.83 | ±1.52 | 20.03 | ±0.40 | 2.39 | ±0.76 | 2.76 | ±1.29 | 1.91 | 41.40 * | |
06 16 | 12.41 | ±1.83 | 18.04 | ±0.39 | 1.15 | ±0.50 | 1.50 | ±0.44 | 3.30 | 47.30 | |
2008 05 19 / 2008 06 10 | 06 03 | 10.66 | ±1.34 | 14.86 | ±0.48 | 2.25 | ±0.83 | 3.88 | ±1.32 | 6.32 | 42.00 |
06 04 | 9.26 | ±1.20 | 14.23 | ±0.59 | 2.41 | ±0.82 | 3.60 | ±1.41 | 4.83 | 40.06 | |
06 05 | 9.71 | ±0.74 | 14.77 | ±0.63 | 1.86 | ±1.04 | 2.62 | ±1.22 | 2.46 | 42.13 | |
06 06 | 11.91 | ±0.62 | 18.68 | ±1.09 | 1.26 | ±0.43 | 2.29 | ±0.58 | 6.25 | 45.96 | |
06 07 | 12.26 | ±1.20 | 17.16 | ±0.56 | 1.82 | ±0.67 | 3.16 | ±0.97 | 6.16 | 52.92 | |
2008 07 25 / 2008 08 03 | 07 24 | 18.64 | ±0.36 | 19.93 | ±0.18 | 7.09 | ±3.07 | 10.28 | ±3.17 | 14.41 | 39.13 |
07 25 | 18.70 | ±0.32 | 20.19 | ±0.24 | 4.10 | ±1.79 | 10.51 | ±3.33 | 15.44 | 32.07 | |
07 26 | 18.85 | ±0.34 | 20.40 | ±0.19 | 5.01 | ±3.71 | 10.25 | ±5.56 | 9.44 | 30.32 | |
07 27 | 18.55 | ±0.36 | 20.48 | ±0.17 | 3.04 | ±1.4 | 5.46 | ±1.24 | 9.09 | 56.61 | |
07 28 | 17.72 | ±0.61 | 20.45 | ±0.17 | 3.08 | ±0.70 | 5.54 | ±1.27 | 8.16 | 42.07 | |
07 29 | 17.06 | ±0.09 | 20.29 | ±0.14 | 2.78 | ±1.95 | 4.31 | ±1.56 | 5.49 | 50.54 | |
07 31 | 17.84 | ±0.76 | 20.44 | ±0.15 | 3.66 | ±0.98 | 3.82 | ±1.19 | 1.51 | 42.25 * | |
2008 09 23–26 | 09 24 | 10.32 | ±0.91 | 15.78 | ±0.44 | 1.03 | ±0.36 | 0.94 | ±0.34 | 1.05 | 56.59 * |
2010 06 22–29 | 06 26 | 12.27 | ±0.67 | 14.99 | ±0.30 | 1.95 | ±0.68 | 3.51 | ±1.54 | 3.65 | 40.67 |
Environmental Variable n = 22 | Mean | Minimum | Maximum | F Value |
---|---|---|---|---|
* Upwelling SST, °C | 14.2 | 8.6 | 18.9 | 3.45 |
* Solar radiation, W m−2 | 311 | 141 | 349 | 2.83 |
* Wind speed, m s−1 | 4.3 | 2 | 7.8 | 1.92 |
Nemunas river discharge, m3 s−1 | 400 | 268 | 735 | 0.23 |
Wind direction | predominant N-NW winds | 0.36 | ||
Deviance explained | 77.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabuleviciene, T.; Vaiciute, D.; Kozlov, I.E. Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sens. 2020, 12, 3661. https://doi.org/10.3390/rs12213661
Dabuleviciene T, Vaiciute D, Kozlov IE. Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sensing. 2020; 12(21):3661. https://doi.org/10.3390/rs12213661
Chicago/Turabian StyleDabuleviciene, Toma, Diana Vaiciute, and Igor E. Kozlov. 2020. "Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations" Remote Sensing 12, no. 21: 3661. https://doi.org/10.3390/rs12213661
APA StyleDabuleviciene, T., Vaiciute, D., & Kozlov, I. E. (2020). Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sensing, 12(21), 3661. https://doi.org/10.3390/rs12213661