PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars
Abstract
:1. Introduction
1.1. Transverse Aeolian Ridges
1.2. Classifying Mars
1.3. RetinaNet
1.4. This Study
2. Materials and Methods
2.1. Imagery
2.2. Classes and Data Labeling
2.3. Model Training
2.4. Training Hardware
2.5. Test Case
3. Results
3.1. Feature Detection
3.2. Test Application
4. Discussion
4.1. Detection and Class Confusion
4.2. Test Application
4.3. Method Novelty
4.4. Implications for TAR Science
4.5. Further Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, S.A.; Zimbelman, J.R. Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars. J. Geophys. Res. E Planets 2004, 109, 1–12. [Google Scholar] [CrossRef]
- Balme, M.; Berman, D.C.; Bourke, M.C.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars. Geomorphology 2008, 101, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.C.; Balme, M.R.; Rafkin, S.C.R.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages. Icarus 2011, 213, 116–130. [Google Scholar] [CrossRef]
- Chojnacki, M.; Hargitai, H.; Kereszturi, Á. Encyclopedia of Planetary Landforms; Springer: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Geissler, P.E.; Wilgus, J.T. The morphology of transverse aeolian ridges on Mars. Aeolian Res. 2017, 26, 63–71. [Google Scholar] [CrossRef]
- Geissler, P.E. The birth and death of TARs on mars. J. Geophys. Res. 2014, 2583–2599. [Google Scholar] [CrossRef]
- Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; Mcewen, A.S.; et al. Planet-wide sand motion on mars. Geology 2012, 40, 31–34. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E.; Favaro, E.A. Formation of periodic bedrock ridges on Earth. Aeolian Res. 2015, 18, 135–144. [Google Scholar] [CrossRef]
- de Silva, S.L.; Spagnuolo, M.G.; Bridges, N.T.; Zimbelman, J.R. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars. Bull. Geol. Soc. Am. 2013, 125, 1912–1929. [Google Scholar] [CrossRef] [Green Version]
- Foroutan, M.; Zimbelman, J.R. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars. Icarus 2016, 274, 99–105. [Google Scholar] [CrossRef]
- Foroutan, M.; Steinmetz, G.; Zimbelman, J.R.; Duguay, C.R. Megaripples at Wau-an-Namus, Libya: A new analog for similar features on Mars. Icarus 2019, 319, 840–851. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Scheidt, S.P. Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for Transverse Aeolian Ridges on Mars. Icarus 2014, 230, 29–37. [Google Scholar] [CrossRef]
- Vriend, N.M.; Jarvis, P.A. Between a ripple and a dune. Nat. Phys. 2018, 14, 741–742. [Google Scholar] [CrossRef]
- Sullivan, R.; Bridges, N.; Herkenhoff, K.; Hamilton, V.; Rubin, D. Transverse Aeolian ridges (TARs) as megaripples: Rover encounters at Meridiani Planum, Gusev, and gale. In Proceedings of the Eighth International Conference on Mars, Pasadena, CA, USA, 14–18 July 2014; Volume 1791, p. 1424. [Google Scholar]
- Zimbelman, J.R. The transition between sand ripples and megaripples on Mars. Icarus 2019, 333, 127–129. [Google Scholar] [CrossRef]
- Silvestro, S.; Chojnacki, M.; Vaz, D.A.; Cardinale, M.; Yizhaq, H.; Esposito, F. Megaripple Migration on Mars. J. Geophys. Res. Planets 2020, 125, e2020JE006446. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E.; Boulding, A. Morphology of transverse aeolian ridges (TARs) on Mars from a large sample: Further evidence of a megaripple origin? Icarus 2017, 286, 193–201. [Google Scholar] [CrossRef]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. E Planets 2007, 112, E05S02. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.A.; Golombek, M.P.; Wilson, S.A.; Farley, K.A.; Williford, K.H.; Chen, A. The science process for selecting the landing site for the 2020 Mars rover. Planet. Space Sci. 2018, 164, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Golombek, M.; Huertas, A.; Kipp, D.; Calef, F. Detection and Characterization of Rocks and Rock Size-Frequency Distributions at the Final Four Mars Science Laboratory Landing Sites. IJMSE 2012, 7, 1–22. [Google Scholar]
- Golombek, M.P.; Huertas, A.; Marlow, J.; McGrane, B.; Klein, C.; Martinez, M.; Arvidson, R.E.; Heet, T.; Barry, L.; Seelos, K.; et al. Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. E Planets 2009, 114, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.A.; Wilson, S.A.; Ruff, S.W.; Golombek, M.P.; Koestler, D.L. Distribution of rocks on the Gusev Plains and on Husband Hill, Mars. Geophys. Res. Lett. 2006, 33. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006GL026964 (accessed on 3 November 2020). [CrossRef] [Green Version]
- Golombek, M.P.; Haldemann, A.F.C.; Forsberg-Taylor, N.K.; DiMaggio, E.N.; Schroeder, R.D.; Jakosky, B.M.; Mello, M.T.; Matijevic, J.R. Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. J. Geophys. Res. E Planets 2003, 108. Available online: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002JE002035%4010.1002/%28ISSN%292169-9100.ROVER1 (accessed on 3 November 2020). [CrossRef]
- Palafox, L.F.; Hamilton, C.W.; Scheidt, S.P.; Alvarez, A.M. Automated detection of geological landforms on Mars using Convolutional Neural Networks. Comput. Geosci. 2017, 101, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, K.L.; Lu, Y.; Stanboli, A.; Grimes, K.; Gowda, T.; Padams, J. Deep Mars: CNN classification of Mars imagery for the PDS imaging atlas. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence AAAI 2018, New Orleans, LA, USA, 2–7 February 2018; pp. 7867–7872. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, Bellevue, WA, USA, 2 July 2011; pp. 17–36. Available online: https://dl.acm.org/doi/10.5555/3045796.3045800 (accessed on 3 November 2020).
- Taylor, M.E.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 2009, 10, 1633–1685. [Google Scholar]
- Dai, W.; Yang, Q.; Xue, G.-R.; Yu, Y. Boosting for transfer learning. In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 193–200. Available online: https://dl.acm.org/doi/proceedings/10.1145/1273496 (accessed on 3 November 2020).
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Wagstaff, K.L.; Panetta, J.; Ansar, A.; Greeley, R.; Hoffer, M.P.; Bunte, M.; Schörghofer, N. Dynamic landmarking for surface feature identification and change detection. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. Available online: https://arxiv.org/abs/1708.02002 (accessed on 3 November 2020).
- Bickel, V.T.; Conway, S.J.; Tesson, P.-A.; Manconi, A.; Loew, S.; Mall, U. Deep Learning-driven Detection and Mapping of Rockfalls on Mars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2831–2841. [Google Scholar] [CrossRef]
- Bickel, V.T.; Lanaras, C.; Manconi, A.; Loew, S.; Mall, U. Automated Detection of Lunar Rockfalls Using a Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3501–3511. [Google Scholar] [CrossRef]
- Bickel, V.T.; Aaron, J.; Manconi, A.; Loew, S.; Mall, U. Impacts drive lunar rockfalls over billions of years. Nat. Commun. 2020, 11, 2862. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Drummond, C.; Holte, R.C. C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling Beats Over-Sampling. In Proceedings of the Workshop on Learning from Imbalanced Datasets II, Washington, DC, USA, 21 August 2003; Volume 11, pp. 1–8. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6858&rep=rep1&type=pdf (accessed on 3 November 2020).
- Abdi, L.; Hashemi, S. To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 2015, 28, 238–251. [Google Scholar] [CrossRef]
- Sáez, J.A.; Krawczyk, B.; Woźniak, M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 2016, 57, 164–178. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. Available online: https://ieeexplore.ieee.org/xpl/conhome/8097368/proceeding (accessed on 3 November 2020).
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. -Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Xiang, C.; Shi, H.; Li, N.; Ding, M.; Zhou, H. Pedestrian Detection under Unmanned Aerial Vehicle an Improved Single-Stage Detector Based on RetinaNet. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–6. Available online: http://www.cisp-bmei.cn/ (accessed on 3 November 2020).
- Mukhopadhyay, A.; Mukherjee, I.; Biswas, P.; Agarwal, A.; Mukherjee, I. Comparing CNNs for non-conventional traffic participants. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings, Utrecht, The Netherlands, 21–25 September 2019; pp. 171–175. Available online: https://dl.acm.org/doi/proceedings/10.1145/3349263 (accessed on 3 November 2020).
- Mandal, J.K.; Banerjee, S.; Kacprzyk, J. Intelligent Computing: Image Processing Based Applications; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9811542880. [Google Scholar]
- Mukhopadhyay, A.; Biswas, P.; Agarwal, A.; Mukherjee, I. Performance Comparison of Different CNN models for Indian Road Dataset. In Proceedings of the 2019 3rd International Conference on Graphics and Signal Processing, Hong Kong, China, 1–3 June 2019; pp. 29–33. Available online: https://dl.acm.org/doi/proceedings/10.1145/3338472 (accessed on 3 November 2020).
- Kapania, S.; Saini, D.; Goyal, S.; Thakur, N.; Jain, R.; Nagrath, P. Multi Object Tracking with UAVs using Deep SORT and YOLOv3 RetinaNet Detection Framework. In Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems, New York, NY, USA, 10 January 2020; pp. 1–6. Available online: https://imobile.acm.org/aims/2020/ (accessed on 3 November 2020).
- Hoang, T.M.; Nguyen, P.H.; Truong, N.Q.; Lee, Y.W.; Park, K.R. Deep retinanet-based detection and classification of road markings by visible light camera sensors. Sensors 2019, 19, 281. [Google Scholar] [CrossRef] [Green Version]
- Ale, L.; Zhang, N.; Li, L. Road damage detection using RetinaNet. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5197–5200. Available online: https://cci.drexel.edu/bigdata/bigdata2018/ (accessed on 3 November 2020).
- Pei, D.; Jing, M.; Liu, H.; Sun, F.; Jiang, L. A fast RetinaNet fusion framework for multi-spectral pedestrian detection. Infrared Phys. Technol. 2020, 105, 103178. [Google Scholar] [CrossRef]
- Afif, M.; Ayachi, R.; Said, Y.; Pissaloux, E.; Atri, M. An evaluation of retinanet on indoor object detection for blind and visually impaired persons assistance navigation. Neural Process. Lett. 2020, 51, 2265–2279. [Google Scholar] [CrossRef]
- Shepley, A.J.; Falzon, G.; Meek, P.; Kwan, P. Location Invariant Animal Recognition Using Mixed Source Datasets and Deep Learning. bioRxiv 2020. Available online: https://www.biorxiv.org/content/10.1101/2020.05.13.094896v1.abstract (accessed on 1 September 2020).
- Pho, K.; Amin, M.K.M.; Yoshitaka, A. Segmentation-driven retinanet for protozoa detection. In Proceedings of the 2018 IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, 10–12 December 2018; pp. 279–286. Available online: https://www.computer.org/csdl/proceedings/ism/2018/17D45VtKisa (accessed on 3 November 2020).
- Alon, A.S.; Festijo, E.D.; Juanico, D.E.O. Tree Detection using Genus-Specific RetinaNet from Orthophoto for Segmentation Access of Airborne LiDAR Data. In Proceedings of the 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 20–21 December 2019; pp. 1–6. Available online: https://ieeexplore.ieee.org/xpl/conhome/9109368/proceeding (accessed on 3 November 2020).
- Liu, M.; Tan, Y.; Chen, L. Pneumonia detection based on deep neural network Retinanet. In Proceedings of the 2019 International Conference on Image and Video Processing, and Artificial Intelligence, Shanghai, China, 23–25 August 2019; Volume 11321, p. 113210F. Available online: http://www.proceedings.com/spie11321.html (accessed on 3 November 2020).
- Jaeger, P.F.; Kohl, S.A.A.; Bickelhaupt, S.; Isensee, F.; Kuder, T.A.; Schlemmer, H.-P.; Maier-Hein, K.H. Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection. In Proceedings of the Machine Learning for Health NeurIPS Workshop, 17 September 2020; pp. 171–183. Available online: http://proceedings.mlr.press/v116/jaeger20a (accessed on 1 September 2020).
- Yang, M.; Xiao, X.; Liu, Z.; Sun, L.; Guo, W.; Cui, L.; Sun, D.; Zhang, P.; Yang, G. Deep RetinaNet for Dynamic Left Ventricle Detection in Multiview Echocardiography Classification. Sci. Program. 2020, 2020, 7025403. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery. Remote Sens. 2019, 11, 531. [Google Scholar] [CrossRef] [Green Version]
- Manee, V.; Zhu, W.; Romagnoli, J.A. A Deep Learning Image-Based Sensor for Real-Time Crystal Size Distribution Characterization. Ind. Eng. Chem. Res. 2019, 58, 23175–23186. [Google Scholar] [CrossRef]
- Yang, L.; Maceachren, A.M.; Mitra, P.; Onorati, T. Visually-enabled active deep learning for (geo) text and image classification: A review. ISPRS Int. J. Geo-Inf. 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Morinan, G. click2label 2020. Available online: https://github.com/gmorinan/click2label (accessed on 1 September 2020).
- Hgaiser Keras-Retinanet 2020. Available online: https://github.com/fizyr/keras-retinanet (accessed on 1 September 2020).
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; pp. 345–359. Available online: https://www.springer.com/gp/book/9783540252955 (accessed on 3 November 2020).
- Powers, D.M. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. 2011. Available online: https://dspace2.flinders.edu.au/xmlui/handle/2328/27165 (accessed on 1 September 2020).
- Scuderi, L.; Nagle-McNaughton, T.; Williams, J. Trace evidence from mars’ past: Fingerprinting Transverse Aeolian Ridges. Remote Sens. 2019, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; Marcato Junior, J.; de Andrade Silva, J.; Pereira, R.; Matos, D.; Menezes, G.; Higa, L.; Eltner, A.; Ramos, A.P.; Osco, L.; et al. Storm-drain and manhole detection using the retinanet method. Sensors 2020, 20, 4450. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Mars global surveyor Mars orbiter camera: Interplanetary cruise through primary mission. J. Geophys. Res. Planets 2001, 106, 23429–23570. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. E Planets 2007, 112, 1–25. [Google Scholar] [CrossRef] [Green Version]
Confidence Threshold | Average Precision (IoU50) | Recall | Precision | F1 |
---|---|---|---|---|
0.2 | 0.602 | 0.419 | 0.742 | 0.536 |
0.3 | 0.419 | 0.742 | 0.536 | |
0.4 | 0.412 | 0.749 | 0.532 | |
0.5 | 0.380 | 0.855 | 0.526 | |
0.6 | 0.357 | 0.929 | 0.516 | |
0.7 | 0.306 | 0.966 | 0.465 | |
0.8 | 0.244 | 0.966 | 0.389 |
Predicted Value | |||||
---|---|---|---|---|---|
No-Classes | TARs | Ripples | Polygonal Terrain | ||
True value | No-classes | 96.8 | 5.6 | 4.6 | 5.0 |
TARs | 2.4 | 92.9 | 3.8 | 0.0 | |
Ripples | 0.8 | 0.8 | 91.2 | 0.0 | |
Polygonal terrain | 0.0 | 0.8 | 0.4 | 95.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagle-McNaughton, T.; McClanahan, T.; Scuderi, L. PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars. Remote Sens. 2020, 12, 3607. https://doi.org/10.3390/rs12213607
Nagle-McNaughton T, McClanahan T, Scuderi L. PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars. Remote Sensing. 2020; 12(21):3607. https://doi.org/10.3390/rs12213607
Chicago/Turabian StyleNagle-McNaughton, Timothy, Timothy McClanahan, and Louis Scuderi. 2020. "PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars" Remote Sensing 12, no. 21: 3607. https://doi.org/10.3390/rs12213607
APA StyleNagle-McNaughton, T., McClanahan, T., & Scuderi, L. (2020). PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars. Remote Sensing, 12(21), 3607. https://doi.org/10.3390/rs12213607