Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. GIMP DEM
2.1.2. TanDEM-X DEM
2.1.3. ArcticDEM
2.1.4. IceBridge
2.1.5. Landsat
2.2. Methods
2.2.1. Sampling Point Selection
2.2.2. Accuracy Evaluation of the DEMs
2.2.3. River Network Extraction
3. Results
3.1. DEM Accuracy
3.1.1. Accuracy Evaluation of the DEMs
3.1.2. Regional Error Analysis of the DEMs
3.1.3. Impact of Interannual Data on DEM Accuracy
3.2. River Network Extraction
3.2.1. The Selection of Threshold
3.2.2. Effect of Image Selection on Verification of Extraction Results
3.2.3. Analysis of River Network Extraction Results of Different DEMs
4. Discussion
4.1. Data Source Differences of DEM Dataset
4.2. Radar Signal Penetration of TanDEM-X
4.3. Geographical Impact
4.4. Time Selection of IceBridge data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alley, R.B.; Andrews, J.T.; Brigham-Grette, J.; Clarke, G.K.C.; Cuffey, K.M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; et al. History of the Greenland Ice Sheet Paleoclimatic insights. Quat. Sci. Rev. 2010, 29, 1728–1756. [Google Scholar] [CrossRef]
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Ivins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S. Ice sheet mass balance and climate change. Nature 2013, 498, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Rignot, E.; Thomas, R.H. Mass Balance of Polar Ice Sheets. Science 2002, 297, 1502–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdeswell, J.A. The Greenland Ice Sheet and Global Sea-Level Rise. Science 2006, 311, 963–964. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.-J.; van Angelen, J.H.; van den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van de Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning Recent Greenland Mass Loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef] [Green Version]
- Luthcke, S.B.; Zwally, H.J.; Abdalati, W.; Rowlands, D.D.; Ray, R.D.; Nerem, R.S.; Lemoine, F.G.; McCarthy, J.J.; Chinn, D.S. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations. Science 2006, 314, 1286–1289. [Google Scholar] [CrossRef] [Green Version]
- Schoof, C. Ice-sheet acceleration driven by melt supply variability. Nature 2010, 468, 803–806. [Google Scholar] [CrossRef]
- Sundal, A.V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 2011, 469, 521–524. [Google Scholar] [CrossRef]
- Joughin, I.; Das, S.B.; Flowers, G.E.; Behn, M.D.; Alley, R.B.; King, M.A.; Smith, B.E.; Bamber, J.L.; van den Broeke, M.R.; van Angelen, J.H. Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere 2013, 7, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Dillabaugh, C.R.; Niemann, K.O.; Richardson, D. Semi-Automated Extraction of Rivers from Digital Imagery. GeoInformatica 2002, 6, 263–284. [Google Scholar] [CrossRef]
- Merwade, V.M. An Automated GIS Procedure for Delineating River and Lake Boundaries. Trans. GIS 2007, 11, 213–231. [Google Scholar] [CrossRef]
- Yang, K.; Smith, L.C. Supraglacial Streams on the Greenland Ice Sheet Delineated from Combined Spectral–Shape Information in High-Resolution Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 801–805. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Tedesco, M.; Smith, L.C.; Behar, A.E.; Overstreet, B.T. Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images. Cryosphere 2014, 8, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Lampkin, D.J.; VanderBerg, J. Supraglacial melt channel networks in the Jakobshavn Isbrae region during the 2007 melt season. Hydrol. Process. 2014, 28, 6038–6053. [Google Scholar] [CrossRef]
- Chu, V.W.; Smith, L.C.; Yang, K.; Gleason, C.J.; Rennermalm, A.K.; Pitcher, L.H.; Legleiter, C.J.; Forster, R.R. Remote Estimation of Greenland Ice Sheet Supraglacial River Discharge using GIS Modeling and WorldView-2 Satellite Imagery. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 1 December 2014. [Google Scholar]
- Yang, K.; Smith, L.C.; Chu, V.W.; Gleason, C.J.; Li, M. A Caution on the Use of Surface Digital Elevation Models to Simulate Supraglacial Hydrology of the Greenland Ice Sheet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5212–5224. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, Y.; Yuan, X.; Yang, X.; Huang, J.; Yu, Y. Threshold Selection of River Network Extraction Based on Different DEM Scales Using ATRIC Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Toutin, T. Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J. Photogramm. Remote Sens. 2006, 60, 170–181. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Q. Digital Elevation Model, 1st ed.; Wuhan Technical University of Surveying and Mapping Press: Wuhan, China, 2000; pp. 12–15. [Google Scholar]
- Endreny, T.; Wood, E.F.; Lettenmaier, D. Satellite-derived digital elevation model accuracy: Hydrological modelling requirements. Hydrol. Process. 2000, 14, 177–194. [Google Scholar] [CrossRef]
- Miliaresis, G.C.; Paraschou, C.V.E. Vertical accuracy of the SRTM DTED level 1 of Crete. Int. J. Appl. Earth Obs. 2005, 7, 49–59. [Google Scholar] [CrossRef]
- Tang, G.; Li, F.; Liu, X. Digital Elevation Model Course, 3rd ed.; Science Press: Beijing, China, 2016; pp. 126–127. [Google Scholar]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The New Global DEM Takes Shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Brutigam, B.; Moreira, A. Tandem-X: A Radar Interferometer with Two Formation Flying Satellites. Acta Astronautica 2013, 89, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J. Ice flow in Greenland for the International Polar Year 2008–2009. Geophys. Res. Lett. 2012, 39, L11501. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Guangdao, H. Some problems of automatic extraction of water system based on digital elevation model. Geogr. Geogr. Inf. Sci. 2004, 20, 11–14. [Google Scholar]
- Rignot, E.; Jezek, K.; Van Zyl, J.; Drinkwater, M.R.; Lou, Y. Radar scattering from snow facies of the Greenland ice sheet: Results from the AIRSAR 1991 campaign. In Proceedings of the IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; pp. 1270–1272. [Google Scholar]
- Abdullahi, S.; Wessel, B.; Huber, M.; Wendleder, A.; Kuenzer, C. Estimating Penetration-Related X-Band InSAR Elevation Bias: A Study over the Greenland Ice Sheet. Remote. Sens. 2019, 11, 2903. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. 2018, 139, 171–182. [Google Scholar] [CrossRef]
DEM | Data Distribution Facility | Download Link | Sources of DEM | Resolution (m) |
---|---|---|---|---|
ArcticDEM | PGC | http://data.pgc.umn.edu/ | GeoEye-1, WorldView-1, WorldView-2, WorldView-3 | 100 |
GIMP1 DEM | NSIDC | https://nsidc.org/data/NSIDC-0645/version/1 | ASTER, SPOT-5 DEM, AVHRR | 90 |
GIMP2 DEM | NSIDC | https://nsidc.org/data/NSIDC-0715/versions/1 | GeoEye-1, WorldView-1, WorldView-2, WorldView-3 | 30 |
TanDEM-X | EOC | https://geoservice.dlr.de/web/dataguide/tdm90/ | TerraSAR-X, TanDEM-X | 90 |
DEM | Time Scale of DEM | The Acquisition Period of the IceBridge Data |
---|---|---|
GIMP1 DEM | 2003–2009 | 2003–2009 * |
GIMP2 DEM | 2009–2015 | 2009–2015 |
TanDEM-X | 2011–2014 | 2011–2014 |
ArcticDEM | 2015–2018 | 2015–2018 |
Satellite | Acquisition Date | Composite Band | Resolution(m) |
---|---|---|---|
Landsat-7 | 07/20/2005 | Band 4, 3, 2 | 30 |
Landsat-7 | 06/19/2011 | Band 4, 3, 2 | 30 |
Landsat-7 | 07/16/2012 | Band 4, 3, 2 | 30 |
Landsat-8 | 08/19/2013 | Band 5, 4, 3 | 30 |
Landsat-8 | 08/06/2014 | Band 5, 4, 3 | 30 |
Landsat-8 | 07/10/2016 | Band 5, 4, 3 | 30 |
DEM | Region 1 (cm) | Region 2 (cm) | Region 3 (cm) | Mean (cm) | Overall Mean (cm) |
---|---|---|---|---|---|
GIMP1 | 5.69 | 4.71 | 2.12 | 4.17 | 3.76 |
TanDEM-X | 6.08 | 0.41 | 1.07 | 2.52 | |
GIMP2 | 2.89 | 3.11 | 7.25 | 4.42 | |
ArcticDEM | 4.69 | 1.47 | 5.66 | 3.94 |
DEM | Total Sampling Points | Removed Sampling Points | Rejection Rate |
---|---|---|---|
GIMP1 | 16,800 | 720 | 4.29% |
TanDEM-X | 21,307 | 127 | 0.60% |
GIMP2 | 37376 | 205 | 0.55% |
ArcticDEM | 28,023 | 159 | 0.57% |
DEM | ME (m) | STD (m) | RMSE (m) | MAD (m) | NMAD (m) |
---|---|---|---|---|---|
GIMP1 | −0.72 | 40.71 | 14.34 | 3.87 | 5.74 |
TanDEM-X | −2.55 | 12.12 | 5.60 | 1.64 | 2.43 |
GIMP2 | −3.60 | 81.54 | 6.98 | 2.49 | 3.68 |
ArcticDEM | 0.85 | 60.40 | 6.02 | 1.52 | 2.26 |
Elevation Range | GIMP1 <2000 | GIMP1 >2000 | GIMP2 <2000 | GIMP2 >2000 | TanDEM-X<2000 | TanDEM-X>2000 | ArcticDEM<2000 | ArcticDEM>2000 |
---|---|---|---|---|---|---|---|---|
ME (m) | 1.78 | −6.71 | −3.84 | −3.04 | −1.83 | −4.19 | 1.10 | 0.30 |
STD (m) | 18.33 | 69.09 | 96.84 | 3.45 | 14.04 | 5.32 | 73.18 | 2.40 |
RMSE (m) | 12.14 | 15.75 | 8.14 | 4.01 | 6.01 | 4.71 | 7.37 | 1.39 |
MAD (m) | 4.79 | 2.37 | 2.84 | 1.68 | 1.72 | 1.35 | 1.67 | 0.70 |
NMAD (m) | 7.10 | 3.51 | 4.21 | 2.50 | 2.54 | 2.01 | 2.47 | 1.04 |
DEM | ME (m) | STD (m) | RMSE (m) | MAD (m) | NMAD (m) |
---|---|---|---|---|---|
GIMP1_CW | −1.87 | 62.88 | 13.24 | 4.49 | 6.66 |
GIMP1_NE | −0.21 | 9.41 | 4.72 | 1.92 | 2.84 |
GIMP1_NO | −0.35 | 4.57 | 3.46 | 1.50 | 2.23 |
GIMP1_NW | −0.21 | 12.60 | 8.39 | 2.83 | 4.19 |
GIMP1_SE | 0.49 | 23.16 | 15.51 | 6.33 | 9.39 |
GIMP1_SW | −0.66 | 13.60 | 9.17 | 3.69 | 5.48 |
GIMP2_CW | −1.63 | 7.43 | 4.89 | 2.82 | 4.18 |
GIMP2_NE | −3.10 | 11.53 | 4.66 | 2.07 | 3.07 |
GIMP2_NO | −1.35 | 6.47 | 2.77 | 1.46 | 2.17 |
GIMP2_NW | −3.49 | 7.87 | 5.10 | 2.39 | 3.54 |
GIMP2_SE | −4.57 | 18.74 | 7.23 | 2.31 | 3.42 |
GIMP2_SW | −6.49 | 187.85 | 5.60 | 3.10 | 4.59 |
TanDEM-X_CW | −1.49 | 7.44 | 4.67 | 1.45 | 2.15 |
TanDEM-X_NE | −3.77 | 9.18 | 5.03 | 1.80 | 2.67 |
TanDEM-X_NO | −3.46 | 4.04 | 4.43 | 1.45 | 2.14 |
TanDEM-X_NW | −3.08 | 5.77 | 4.50 | 1.34 | 1.99 |
TanDEM-X_SE | −2.34 | 25.16 | 8.59 | 2.12 | 3.14 |
TanDEM-X_SW | −1.56 | 7.85 | 4.35 | 1.16 | 1.73 |
ArcticDEM_CW | 1.37 | 6.17 | 3.46 | 1.55 | 2.30 |
ArcticDEM_NE | 0.65 | 7.68 | 3.35 | 1.26 | 1.86 |
ArcticDEM_NO | 0.98 | 2.97 | 2.09 | 1.03 | 1.53 |
ArcticDEM_NW | 2.60 | 6.75 | 4.23 | 1.64 | 2.43 |
ArcticDEM_SE | 1.63 | 7.78 | 4.48 | 1.69 | 2.50 |
ArcticDEM_SW | −1.06 | 115.30 | 5.38 | 1.49 | 2.21 |
DEM | Yr. Mon | Mean (m) | STD (m) | RMSE (m) | MAD (m) | NMAD (m) | RMSE_STD (m) | NMAD_STD (m) |
---|---|---|---|---|---|---|---|---|
GIMP1 | 2003.05 | −2.07 | 14.23 | 8.44 | 2.28 | 3.38 | 2.39 | 4.47 |
2005.05 | −3.53 | 15.97 | 9.73 | 3.92 | 5.81 | |||
2006.05-06 | 0.16 | 15.92 | 10.07 | 3.84 | 5.69 | |||
2007.05,09 | 0.29 | 11.44 | 6.93 | 2.27 | 3.36 | |||
2008.06-08 | 3.85 | 29.44 | 14.73 | 5.16 | 7.65 | |||
2009.03-05 | 1.72 | 16.00 | 9.68 | 3.35 | 4.97 | |||
TanDEM—X | 2011.03-05 | −3.51 | 8.52 | 5.20 | 1.29 | 1.92 | 0.46 | 2.40 |
2012.03-05 | −2.89 | 13.39 | 5.65 | 1.47 | 2.18 | |||
2013.03-04 | −1.59 | 9.40 | 4.71 | 1.76 | 2.61 | |||
2014.03-05 | −1.86 | 7.38 | 4.45 | 1.82 | 2.71 | |||
GIMP2 | 2009.03-05 | −4.88 | 9.29 | 6.18 | 2.78 | 4.12 | 0.72 | 6.37 |
2010.03-05 | −4.20 | 7.41 | 5.36 | 2.52 | 3.74 | |||
2011.03-05 | −2.65 | 6.35 | 4.45 | 2.49 | 3.70 | |||
2012.03-05 | −2.36 | 9.72 | 4.81 | 2.15 | 3.19 | |||
2013.03-04 | −0.92 | 7.72 | 4.05 | 2.42 | 3.58 | |||
2014.03-05 | −1.18 | 8.12 | 3.93 | 2.06 | 3.06 | |||
2015.03-05, 09-10 | −0.79 | 26.25 | 4.80 | 2.57 | 3.81 | |||
ArcticDEM | 2015.03-05, 09-10 | 0.90 | 18.69 | 3.95 | 1.25 | 1.86 | 0.14 | 5.50 |
2016.05, 08-09 | 1.84 | 6.52 | 3.72 | 1.65 | 2.45 | |||
2017.03-05, 07 | 1.51 | 6.38 | 3.55 | 1.47 | 2.18 | |||
2018.03-05 | 1.62 | 6.39 | 3.69 | 1.54 | 2.28 |
DEM | Extracted River Network Length (m) | Digitized River Network Length (m) | Difference (m) | Accuracy (%) |
---|---|---|---|---|
GIMP1 | 949,826.94 | 745,636.18 | −204,190.76 | 8.83% |
TanDEM-X | 740,792.98 | 979,700.55 | 238,907.57 | 50.78% |
GIMP2 | 791,657.02 | 1,005,942.09 | 214,285.07 | 47.32% |
ArcticDEM | 671,954.38 | 970,166.72 | 298,212.34 | 50.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Chi, Z.; Yang, Y.; Chen, S.; Huang, H.; Cheng, X.; Hui, F. Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction. Remote Sens. 2020, 12, 3429. https://doi.org/10.3390/rs12203429
Xing Z, Chi Z, Yang Y, Chen S, Huang H, Cheng X, Hui F. Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction. Remote Sensing. 2020; 12(20):3429. https://doi.org/10.3390/rs12203429
Chicago/Turabian StyleXing, Ziyang, Zhaohui Chi, Ying Yang, Shiyi Chen, Huabing Huang, Xiao Cheng, and Fengming Hui. 2020. "Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction" Remote Sensing 12, no. 20: 3429. https://doi.org/10.3390/rs12203429
APA StyleXing, Z., Chi, Z., Yang, Y., Chen, S., Huang, H., Cheng, X., & Hui, F. (2020). Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction. Remote Sensing, 12(20), 3429. https://doi.org/10.3390/rs12203429