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Abstract: Accelerating melt on the Greenland ice sheet leads to dramatic changes at a global scale.
Especially in the last decades, not only the monitoring, but also the quantification of these changes has
gained considerably in importance. In this context, Interferometric Synthetic Aperture Radar (InSAR)
systems complement existing data sources by their capability to acquire 3D information at high
spatial resolution over large areas independent of weather conditions and illumination. However,
penetration of the SAR signals into the snow and ice surface leads to a bias in measured height,
which has to be corrected to obtain accurate elevation data. Therefore, this study purposes an easy
transferable pixel-based approach for X-band penetration-related elevation bias estimation based
on single-pass interferometric coherence and backscatter intensity which was performed at two test
sites on the Northern Greenland ice sheet. In particular, the penetration bias was estimated using
a multiple linear regression model based on TanDEM-X InSAR data and IceBridge laser-altimeter
measurements to correct TanDEM-X Digital Elevation Model (DEM) scenes. Validation efforts yielded
good agreement between observations and estimations with a coefficient of determination of R2 = 68%
and an RMSE of 0.68 m. Furthermore, the study demonstrates the benefits of X-band penetration bias
estimation within the application context of ice sheet elevation change detection.

Keywords: InSAR height; penetration bias; cryosphere; TanDEM-X; Greenland ice sheet; DEM

1. Introduction

1.1. Motivation

In July 2012, satellite observations detected an extreme melt event covering 98.6% of the entire
Greenland ice sheet [1,2]. Such remarkable events, which confirm the dramatic changes of the
cryosphere, occur very rarely and have been observed only twice since the Medieval Warm Period [3].
Especially in the last two decades, a trend of accelerating melt of the Greenland ice sheet with increasing
melt extent as well as lengthened melt season is emerging [1,3,4]. According to Shepherd et al. [5],
the annual ice loss of the Greenland ice sheet was twice the annual loss compared to Antarctica in
the period from 1992 to 2011 and has increased steadily. As stated by Flowers et al. and Van den
Broeke et al. [6,7], a complete melting of the entire Greenland ice sheet would contribute to a global
sea level rise of about 7 m, which will threaten hundreds of millions of people across the world [3].
Besides sea level rise, those changes in the cryosphere also play a major role in the Earth’s climate
system with respect to the surface energy budget, the water cycle, primary productivity, and surface
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gas exchange [3]. Foremost, these changes will severely impact human livelihoods worldwide by
means of an increased potential of flooding in coastal zones, consequences for agri- and aquaculture,
marine shipping, oil and natural gas production, and tourism [3].

To face these concerning trends and associated challenges for the environment as well as human
society, the changes in the cryosphere and their associated drivers must be identified and quantified.
In this regard, remote sensing techniques offer the possibility to acquire up-to-date, reliable, and
detailed information about the state and especially the dynamics of the cryosphere and thus facilitate
our understanding and enable the development of sufficient adaptation and mitigation strategies.
Interferometric Synthetic Aperture Radar (InSAR) systems in particular are well suited for the
assessment of glaciers and ice sheets, since they provide 3D information with high spatial resolution
over large areas without limitations due to weather conditions or illumination [8]. The dynamics of the
global ice sheets (i.e., changing ice flow velocity and topography) are of highest interest in the context
of the climate change [9–11] and can be estimated using multi-temporal InSAR-based elevation data.
The German TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission was the
first single-pass SAR interferometer in space and enables highly accurate InSAR acquisitions without
accuracy limitations caused by repeat-pass interferometry [12]. The objective of the TanDEM-X mission
is the generation of a consistent, high-precision global Digital Elevation Model (DEM). According to
Rizzoli et al. [13], the global TanDEM-X DEM provides high absolute height accuracy (i.e., overall
absolute height accuracy of 3.5 m and absolute linear error of 90%); however, over highly vegetated
and snow-/ice-covered regions, the height accuracy mainly suffers from volume decorrelation effects.
Volume decorrelation over snow- and ice-covered regions is caused by penetration of the SAR signal
into the snow pack [14]. Depending on the characteristics of the snow pack (e.g., snow density, grain
size, and dielectric properties), different scattering and thus different penetration of the SAR signal
occurs [15]. For estimation of the penetration bias, several approaches and techniques are proposed in
the literature, which can be divided into two major categories.

Model-based approaches quantify the penetration bias by aiming to capture the underlying
scattering mechanisms in order to estimate volume decorrelation and thus penetration of the
SAR signal. For example, Hoen and Zebker [16] used correlation images of C-band ERS data
for modeling penetration depth over Greenland. Dall [17] employed coherence for correction of
the penetration-induced elevation bias in InSAR data by means of the coherent backscatter model.
Oveisgharan and Zebker [18] modeled InSAR penetration based on a combination of radar brightness
and correlation in the dry snow zone of Greenland. In addition, the model-based approach for
estimation of penetration bias was transferred to polarimetric InSAR data by Stebler et al. and
Fischer et al. [19,20].

In contrast, there are approaches that estimate the penetration bias based on empirically determined
glacier facies. The glacier facies reflect the radar scattering characteristics of the snow pack and thus can
be used to approximate InSAR penetration bias. These zones were related to ERS-1 SAR imagery over
Greenland for the first time by Fahnestock et al. [21], who distinguished distinct backscatter signatures
for the dry snow zone, the percolation zone, the wet snow zone, and the bare ice zone. In this regard,
several studies investigated the delineation and classification of glacier facies over Greenland based on
InSAR data (e.g., [8,22,23]). Most recently, Rizzoli et al. [24] employed fuzzy clustering of a mosaic
of TanDEM-X radar backscatter over Greenland for classification of these four zones and estimated
penetration bias assuming uniform snow density for each zone.

To evaluate X-band InSAR data for the investigation of glacial meltdown, the current study aimed
to develop a generic and easily transferable pixel-based approach using the relationship between
TanDEM-X penetration bias and interferometric coherence as well as backscatter intensity. In contrast
to earlier studies, the proposed method works independently of prior knowledge on the physical
properties of the snow pack (e.g., snow density, stratigraphy, and grain size) or the determination
of the presence and number of glacier facies and thus enables the estimation of penetration-related
elevation bias only on the basis of InSAR data. In detail, the aims of this study were defined as:
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(i) estimation of TanDEM-X penetration bias using a multiple linear regression model based on
interferometric coherence and backscatter intensity; and (ii) application of the proposed approach to
correct TanDEM-X DEM scenes and derive elevation change at a test site in the north of the Greenland
ice sheet. In addition, the transferability of the proposed approach to the entire Greenland ice sheet
based on multi-annual TanDEM-X InSAR data is discussed.

1.2. Conceptual Framework

As stated by Dall [17], InSAR elevation bias results from penetration of the radar signals into a
volume. The penetration bias is defined as the difference between InSAR height (i.e., height of the
phase center corresponding to the mean locus of backscatter) and the Earth’s surface elevation [16].
The penetration of the SAR signal is dependent on radar frequency, radar imaging conditions, and the
physical and dielectric characteristics of the snow/ice layer [8].

In this study, TanDEM-X penetration bias ∆h is defined as the difference between TanDEM-X
DEM hTanDEM−X and laser-altimeter surface height measurements of IceBridge hIceBridge and ICESat
mission hICESat, respectively.

∆h = hTanDEM−X − hIceBridge

and
∆h = hTanDEM−X − hICESat

Figure 1 illustrates the concept of InSAR penetration bias and its influencing factors. The physical
properties of the snow pack, such as surface roughness, grain size, density, water content, and
stratigraphy, determine the penetration of the SAR signal [25]. The snow and ice characteristics are
in turn determined by snow metamorphism and ablation processes driven by accumulation, annual
temperature variation, and summer melt, which vary with geographical location, surface elevation, and
regional climate [26]. According to the snow morphology, distinct zones at the surface area of a glacier
or an ice sheet (i.e., glacier facies) can be distinguished. For the Greenland ice sheet, five different zones
(i.e., bare ice zone, superimposed ice zone, wet snow zone, percolation zone, and dry snow zone) were
described initially by Benson [27]. Surface scattering, volume scattering, and subsurface scattering
occur depending on the physical snow parameters and thus yield distinct backscatter signatures
and signal penetration for each zone varying from season to season and from year to year. Besides,
the scattering behavior of the SAR signals is influenced by the acquisition geometry (e.g., effective
baseline of the InSAR system, incidence angle, and look direction). The different interaction of the
SAR signals with the surface of the glacier in each zone results in different InSAR penetration bias
with local variations. Interferometric coherence, defined as the normalized cross-correlation of the
two SAR images, and backscatter intensity are strongly related to the glacier zones and thus to InSAR
penetration bias [18,28,29].

The bare ice zone is characterized by varying surface roughness and dynamic structures such as
crevasses and cracks [21]. During winter, the ice is covered by dry snow, which will have melted by the
end of the ablation period [30]. In general, the bare ice zone is dominated by surface scattering with
low interferometric coherence and backscatter intensity, which decreases during summer due to the
presence of meltwater. Penetration of the SAR signals is very low underlying seasonal variations [16],
which causes only small penetration bias.

The superimposed ice zone results from refreezing of meltwater [21]. At the end of summer, the
snow cover from winter has completely melted and the meltwater forms a new layer of superimposed
ice on the cold glacier surface dependent of the local topography. During the refreezing process, small
air bubbles (with a size ranging from mm to cm) are trapped in the new ice layer, depending on the
time of refreezing [31]. In winter, backscatter intensity is low due to volume scattering caused by the
air bubbles, whereas it is very low in summer due to surface melt. In years with pronounced ablation,
this zone may not exist, whereas, in years of reduced ablation, the superimposed ice zone may be
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separable from the bare ice zone based on its higher degree of smoothness [30]. The superimposed ice
zone is characterized by small penetration bias due to weak signal penetration varying with season.
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Figure 1. Conceptualization of InSAR penetration bias.

The snow in the wet snow (i.e., soaked snow) zone reaches the melting point as a result of latent
heat released by extensive refreezing of meltwater [21], yielding recrystallization and larger grain
sizes. The entire annual accumulation of snow is subject to melting and refreezing, which results in the
formation of ice inclusions (i.e., ice lenses, pipes, and layers) [30]. Higher interferometric coherence
and backscatter intensity than in the superimposed ice zone are caused by ice inclusions, which become
less effective scatterers in summer due the saturated snow [32]. Greater penetration bias compared to
the bare and superimposed ice zone can be observed.

In the percolation zone, surface snow is subject to melt and percolates down through the cold firn
forming massive layers and vertical as well as horizontal oriented pipes of solid ice by refreezing [32].
According to Benson [27], the transition from the wet snow zone to the percolation zone on the
Greenland ice sheet takes places over a few kilometers only. The ice inclusions can have dimensions
that are comparable or larger in relation to the wavelength of the X-band SAR and act as dihedral or
dipole scatterers in the subsurface inducing strong backscatter and high interferometric coherence
in winter [21,32]. In contrast, surface melt leads to dominant surface scattering with low backscatter
intensity and interferometric coherence in summer. Smaller penetration bias than in the wet snow
zone can be observed depending on the vertical position of the ice inclusions, which is subject to
seasonal variations.

In the dry snow zone at higher altitudes, the snow is gradually compacted under its own weight
or metamorphosed under the effect of wind or depth-hoar development [30]. The transition from the
percolation zone to the dry snow zone gradually takes place over a greater distance, inducing a smooth
transition to low interferometric coherence and backscatter intensity. The absence of ice inclusions as
well as small grain size increase volume scattering [16] and cause a significant loss of coherence due to
deeper signal penetration (i.e., greater penetration bias) and reduced backscatter intensity.
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All zones are subject to small-scale variations. In general, interferometric coherence and backscatter
intensity reflect the properties of the glacier surface, which are directly related to InSAR penetration
bias. Therefore, interferometric coherence and backscatter intensity are relevant for estimating the
InSAR penetration bias.

2. Study Area

The Greenland ice sheet is the Earth’s second largest continuous ice body after the Antarctic ice
sheet. It covers about 1.7 million km2 (i.e., about 80% of Greenland’s land surface), which equals
approximately five times the territory of Germany, with a volume of about 2.8 million km3 [33]. The
geographical position of the ice sheet ranges from 59◦ to 83◦ north (i.e., about 2600 km) and from 73◦ to
110◦ west (i.e., 1200 km) [33]. The ice thickness is on average 1.6 km and more than 3 km at its thickest
point [34]. Greenland is characterized by polar and subpolar climate with average temperatures below
ten degrees in summer [35].

The study area is located in the north of the Greenland ice sheet (Figure 2). Each of the two test
sites covers TanDEM-X data takes acquired from south to north in ascending orbit direction. Along
this path, the land cover changes from dry snow zone at the most southern point of each test site across
all glacier zones to rocks at the coast. In the following, the two test sites are referred to as the western
and eastern site, respectively. TanDEM-X data corresponding to the red footprints in Figure 2 were
used for model calibration and validation while TanDEM-X data corresponding to the blue footprints
were used to further validate and verify the transferability of the model.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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Figure 2. Study area located in the north of the Greenland ice sheet. Red: TanDEM-X footprints of
acquisitions acquired in April 2012 (western data take acquired on 10 April 2012, eastern data take
acquired on 2 April 2012) and used for model calibration and validation. Blue: TanDEM-X footprints of
acquisitions acquired on 5 April 2011 for further validation and verification of the transferability of
the model.
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3. Datasets

3.1. TanDEM-X Elevation Data

The TanDEM-X mission provides interferometric X-band (9.65 GHz) data and enables the
generation of a worldwide, consistent DEM with a globally unpreceded spatial resolution of 0.4 arc
seconds (i.e., about 12 m) [12]. The mission is composed of the two almost identical satellites TerraSAR-X
(launched in 2007) and TanDEM-X (launched in 2010) flying in a closely controlled formation. The
simultaneous acquisition avoids possible errors due to temporal decorrelation and atmospheric
disturbances [36]. Single-polarized (HH) interferometric TanDEM-X image pairs acquired in bistatic
StripMap mode were used to generate digital elevation models for each single scene which were
combined to the global TanDEM-X DEM [37].

For generation of single-scene DEMs, so-called RawDEMs, the backscattered signals are combined
to an interferogram and the resulting phase differences are converted into height based on the
interferometer geometry. The processing chain including data take analysis, common parameter
calculation, synchronization, bistatic focusing, filtering, co-registration, phase unwrapping, and
geocoding is implemented within the Integrated TanDEM-X Processor (ITP) [38,39]. The geocoded
elevation information of the DEM scenes reflects the location of the mean phase center resulting from
single or multiple backscattered signals within the same resolution cell and thus is dependent on signal
penetration [13].

The global TanDEM-X DEM over Greenland is based on a mosaic of acquisitions from winters
2010/2011 (first coverage) and 2011/2012 (second coverage), as well as additional third and fourth
coverages for steep coastal areas, which were acquired until mid-2014. Previously, all DEM scenes
were calibrated to the rocky coast by the use of ICESat laser-altimeter measurements [40,41].

In this study, TanDEM-X InSAR data takes from winter 2010/2011 and winter 2011/2012 were
used (Table 1). As depicted in Figure 2, two TanDEM-X data takes from April 2012 were used for
model calibration and validation (red TanDEM-X footprints) and one data take acquired in April 2011
was used to further validate and verify the transferability of the derived model as well as investigate
the impact of penetration bias on elevation change detection (blue TanDEM-X footprints). The DEM,
interferometric coherence (COH) and amplitude (AMP) are used.

Table 1. TanDEM-X InSAR data takes used in this study. The value ranges of the incidence angle
and the effective baseline are defined by the minimum and maximum value corresponding to the
acquisition time.

Acquisition
Date

Number of
Scenes Polarization Orbit Look

Direction
Incidence

Angle
Effective
Baseline

5 April 2011 8 HH Ascending Right 40.6–40.6◦ 101.9–109.2 m
2 April 2012 8 HH Ascending Right 41.4–41.5◦ 178.2–189.2 m
10 April 2012 8 HH Ascending Right 39.4–39.5◦ 170.3–182.0 m

3.2. ICESat Data

The ICESat (Ice, Cloud and land Elevation Satellite) mission operated from February 2003 to
October 2009 and provided global spaceborne laser-altimeter data with a spatial resolution of 60–70 m
and a sampling distance of 170 m along-track and 80 km across-track, respectively. The primary
aim of the ICESat mission was to measure ice sheet mass balance, cloud, and aerosol heights, as
well as land topography and vegetation characteristics [42]. In accordance with Rizzoli et al. and
Wessel et al. [24,41], the ICESat GLA 14 product (Global Land Surface Altimetry Data) [42] was used as
surface reference height for empiric approximation of the TanDEM-X penetration bias at large spatial
scale (i.e., the entire Greenland ice sheet) in this study.
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3.3. IceBridge Data

Due to the temporal inconsistency of ICESat elevation data and TanDEM-X DEM data takes,
additional IceBridge data were employed in this study. IceBridge is an airborne mission that is repeated
annually over the Arctic, Greenland, and Antarctica to bridge the temporal gap between the cessation
of data collection by ICESat in 2009 and the launch of the ICESat-2 satellite on 15 September 2018. The
IceBridge mission offers elevation measurements based on the same laser-altimeter as ICESat with an
increased spatial resolution with a footprint size of 1–3 m and varying sampling distance [43]. For
determination of reference values of the TanDEM-X penetration bias, IceBridge ATM L2 Icessn Elevation
data [44] were used. The model calibration and validation were based on IceBridge laser-altimeter
measurements acquired during the period from 30 March 2012 to 16 May 2012 and the transfer and
application of the model were based on IceBridge laser-altimeter measurements acquired on 29 March
2011. The dataset contains resampled and smoothed elevation measurements of Greenland ice sheet
surface acquired using the NASA Airborne Topographic Mapper (ATM) instrumentation [44].

4. Methods

A multiple linear regression model based on interferometric coherence and backscatter intensity
was used to estimate X-band penetration bias. Figure 3 depicts the workflow of the current study.
In a first step, the TanDEM-X data were pre-processed including preparation and adjustment of
interferometric coherence, radiometric calibration of backscatter intensity, and calibration of the DEM.
In a second step, the TanDEM-X data acquired in 2012 and the IceBridge laser-altimeter measurements
were combined and used to fit the regression coefficients of the multiple linear model and to validate
the accuracy. Finally, the derived model was applied to all TanDEM-X datasets in order to estimate the
penetration bias. Subsequently, the calibrated DEM scenes from 5 April 2011 and 2 April 2012 were
corrected and elevation change was derived.
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4.1. Pre-Processing

4.1.1. Preparation and Adjustment of Interferometric Coherence

The interferometric coherence is influenced by the acquisition geometry as well as the properties of
the scatterer [45]. As only the properties of the snow pack are to be detected, the impact of acquisition
geometry must be mitigated for datasets with deviating effective baseline. Analyzing the relationship
between penetration bias and interferometric coherence for the data used in this study (with quite
large baselines differences of about 80 m) revealed a change in this relationship depending on the
effective baseline between the two satellites. Figure 4a) shows the relationship of penetration bias
based on ICESat and IceBridge (if available) and interferometric coherence averaged per individual
DEM scene, while Figure 4b illustrates the used datasets. The spatial separation of the two antennas
cause different illumination angles for the two images and thus different backscatter at the ground [16].
The difference between the two images will be small for short baselines, but will increase with baseline
length until the critical baseline is reached and the two images are completely decorrelated [45]. This
systematic loss in interferometric coherence is enhanced with increasing volume scattering (i.e., deeper
signal penetration into the snowpack). According to Figure 4, it can be assumed that longer baselines
decrease coherence, but do not influence the penetration bias.
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To correct this effect on the dataset comprising TanDEM-X acquisitions with significantly deviating
effective baselines, the interferometric coherence data from 2011 were adjusted to the data from
2012. Therefore, the trend of the coherence depending on signal penetration was calculated. The
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coherence values corresponding to the April 2011 acquisitions were projected onto the regression line
corresponding to the effective baselines of the April 2012 acquisitions (Figure 4) according to:

COH2011corr =
−22.92− (−14.78)

16.57
+

24.45
16.57

·COH2011

4.1.2. Radiometric Calibration of Backscatter Intensity

Several studies prove the capability of the backscatter coefficient σ0 (i.e., backscatter level projected
onto the ground [46]) for the retrieval of snow and ice characteristics (e.g., [28,30,47]). As stated by
Ashcraft et al. [47], σ0 is sensitive to snow grain size, wetness, and subsurface features and is therefore
suitable for mapping of glacier facies and their variations. Thus, σ0 was used in this study to employ
the relationship between backscatter intensity and TanDEM-X penetration bias. σ0 is derived from
each single amplitude scene [48] according to

σ0 = (ks·|AMP|2 −NEBN)· sinθloc,

and converted to Decibel
σ0

dB = 10· log10 σ
0,

where AMP is the backscatter intensity in digital numbers (pixel intensity value); ks is the calibration
and processor scaling factor for the SAR signals annotated in the supplied metadata [49]; NEBN is the
Noise Equivalent Beta Nought, which represents the influence of different noise contributions to the
signal and is annotated in the supplied metadata in form of polynomials over range with azimuth time
tags describing the noise power; and θloc is the local incidence angle [48,50].

4.1.3. Height Calibration

To correct remaining systematic height errors after phase unwrapping and geocoding within
the ITP, an offset from the operational TanDEM-X DEM Calibration and Mosaicking Processor [49]
was applied. As opposed to the calibration of the global TanDEM-X DEM [40], two time-staggered
TanDEM-X DEM mosaics were created for data acquired in 2011 and 2012, respectively [51]. Calibration
offsets between −0.8 and 0.4 m were determined for the investigated data takes. This absolute height
calibration is an important step as it ensures the derivation of comparable elevation values between
different data takes.

4.2. Estimation of X-Band Penetration Bias

The penetration bias ∆h was estimated using a multiple linear regression model based on the
interferometric coherence COH and the backscatter coefficient σ0

dB.

∆h = a0 + a1·COH + a2·σ
0

dB,

where a0, a1, and a2 are the regression coefficients. The penetration bias was estimated by the calculated
regression plane of the linear model, deriving the expected value of ∆h for specific values of COH and
σ0

dB. The regression plane describes the best fit among penetration bias, interferometric coherence, and
backscatter intensity with a0 as the intercept. To fit the model, the difference between TanDEM-X DEM
and IceBridge elevation measurements, mean interferometric coherence, and mean backscatter intensity
at each IceBridge footprint were used as ∆h, COH, and σ0

dB, respectively. The dataset comprising
87,097 data samples was based on TanDEM-X acquisitions from 2 April 2012 and 10 April 2012 (Table 1)
and IceBridge laser-altimeter measurements acquired from 30 March 2012 to 16 May 2012 (Figure 2).
TanDEM-X data from 5 April 2011 were excluded from model calibration and were used solely for
validation and verification of transferability.
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Seventy-five percent of the data were randomly selected for model calibration. The remaining
25% were used to evaluate the accuracy of the estimations. The fitted model was applied to all of the
data takes and the pixel-wise penetration bias estimation of each TanDEM-X acquisition was validated
by means of coefficient of determination and RMSE.

4.3. Elevation Change

To assess the effect of the penetration bias on elevation change using X-band InSAR data,
TanDEM-X data acquired on 5 April 2011 were used in addition to the dataset from 2 April 2012
(Table 1). Both datasets were recorded outside the melting period with similar incidence angles of
about 40.6◦ for the dataset of 5 April 2011 and about 41.4◦ for the dataset of 2 April 2012. However, the
effective baselines of the datasets deviate significantly and range from 101.9 and 109.2 m for the data
collected in 2011 and from 178.2 to 189.2 m for the data collected in 2012. Thus, baseline-adjustment
of interferometric coherence was employed as described above. Subsequently, the fitted model was
applied to the adjusted interferometric coherence and the backscatter intensity from 2011. To verify
the reliability of the estimates for 2011, IceBridge data from 29 March 2011 were used for validation
purposes. Height differences between 2011 and 2012 were derived from the penetration-corrected
TanDEM-X DEMs and were compared to uncorrected differences.

5. Results

5.1. Estimation of X-Band Penetration Bias

The model achieved estimations with a standard error of 0.69 m and explains almost 70% of the
variance of X-band penetration bias. Both variables (i.e., interferometric coherence and backscatter
intensity) are highly significant (p < 0.001) and the residuals possess a median value of −0.01 m, with
lower and upper quartiles of −0.44 and 0.41 m, respectively. Table 2 shows standard errors, t statistic,
and p values of the fitted regression parameters.

Table 2. The standard errors, t statistic, and p values of the fitted regression parameters of the multiple
linear model.

Parameter Standard Error t-Value Pr (>|t|)

Intercept (a0) 0.03 −434.64 <2e-16
a1 0.05 338.85 <2e-16
a2 0.001 −58.68 <2e-16

Figure 5 shows the comparison of observed (blue dots) and fitted (turquoise dots) penetration
bias related to TanDEM-X elevation plotted for each IceBridge laser measurement. The glacier facies
described above can be easily distinguished. In low altitudes, low penetration of the SAR signals into
the bare ice/superimposed ice yield very low penetration bias with high variation due to crevasses
and cracks. Subsequently, the penetration bias increases in the wet snow zone up to −3 to −4 m. The
adjacent percolation zone is characterized by less penetration bias in the order of −2 to −3 m. Finally,
in high altitudes (i.e., dry snow zone) the highest penetration bias up to −8 m can be observed. In
general, observations and fitted values coincide well. However, over bare ice the model fit slightly
overestimates the penetration bias. Furthermore, some underestimation can be observed in the dry
snow zone at an elevation of about 2100 m.
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Figure 5. Observed (i.e., TanDEM-X DEM from 2012 minus IceBridge laser measurements from
2012) (blue) versus fitted (turquoise) penetration bias values related to TanDEM-X elevation for each
IceBridge footprint.

Figure 6 shows the spatial patterns in interferometric coherence, backscatter intensity, and the
corresponding penetration bias estimation caused by the different snow and ice characteristics of the
glacier surface for data acquired on 2 April 2012 (Figure 6a) and 10 April 2012 (Figure 6b). As expected,
areas on the ice sheet exhibit penetration bias up to −8 m, whereas areas on solid rock show values of
penetration bias around zero. However, layover effects due to steep slopes along the outlet glacier as
well as open water cause estimation errors (i.e., penetration bias of −9 m or more) in the northern parts
at the coast (right side of Figure 6a,b). Although both datasets cover similar regions of the Greenland
ice sheet, individual patterns in penetration bias can be observed. These differences are most likely
caused by small-scale local variations in the structure of the glacier surface as well as in the properties
of the snow pack.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 20 
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Figure 7 presents the penetration bias estimates in the larger spatial context of the Northern
Greenland ice sheet. The difference between a time-staggered 2012 TanDEM-X DEM mosaic (acquired in
March, April, and May 2012) [51] and ICESat elevation measurements (acquired from February 2003 to
October 2009) are superimposed by the penetration bias estimations for the two data takes acquired in
April 2012. Despite the time lag of several years, the height differences based on the ICESat data can be
used as an indicator for the general spatial pattern of the TanDEM-X penetration bias due to the stability
of large parts of the Greenland ice sheet. Nevertheless, it must be considered that the differences at
the margin of the ice sheet are rather caused by surface melt than by penetration of the SAR signals.
Although the absolute values are not valid in some areas over bare ice (e.g., overestimation of the
penetration bias on the glacier tongue can be seen on the right side of Figure 7b), the approximate
distinction of the glacier zones is reliable. Along the coast, penetration bias around zero can be observed
over rock. On the ice sheet, the above described distinct glacier zones can be distinguished. The
percolation zone, characterized by penetration bias between −2 and −3 m, can be well separated in
the height differences based on ICESat as well as in the penetration bias estimations. Both datasets,
especially in the eastern test area, also clearly show the transition from the percolation zone to the dry
snow zone with a gradually increasing penetration bias from about −4 to −10 m.
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Figure 7. Difference between time-staggered 2012 TanDEM-X DEM mosaic (acquired in March, April,
and May 2012) and ICESat elevation measurements (acquired from February 2003 to October 2009)
superimposed by penetration bias estimations for both test sites in April 2012.

Quantitative validation in terms of comparison of observed against estimated values (Figure 8)
supports the image of Figure 5 and shows good agreement by means of a coefficient of determination of
R2 = 68% and an RMSE of 0.68 m (Figure 8). In general, observations and estimations fit well together
with a correlation coefficient of 83% (Figure 8a) and the residuals are normally distributed around zero
(Figure 8b). Nevertheless, an overestimation of penetration bias is also apparent in the validation plot
as shown by higher estimated penetration bias values in comparison with their respective observed
values (Figure 8a). Observed penetration bias between 0 and −1 m (i.e., almost no signal penetration)
over bare ice at the coast are overestimated in the order of up to 1–2 m caused by an ambiguity in
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interferometric coherence and backscatter intensity. Due to the smooth ice surface, main parts of the
SAR signals are scattered away from the antenna, which leads to low backscatter intensity similar to
the dry snow zone (right side of Figure 6). The obvious clusters round −3, −4.5, and −6 m (Figure 8a)
are caused by the uneven distribution of IceBridge reference data across glacial zones (Figure 4).Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 20 
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Figure 8. (a) Comparison of observed (i.e., TanDEM-X DEM minus IceBridge laser measurements) and
estimated penetration bias per IceBridge footprint; and (b) the corresponding distribution of residuals.

5.2. Elevation Change

The comparison between observed and estimated penetration bias for data acquired on 5 April
2011 shows a slightly worse match with an RMSE of 1.02 m compared to the estimations corresponding
to April 2012 (RMSE = 0.68 m). However, it should be considered that suitable IceBridge data were
only available for the dry snow zone where the model showed a slight underestimation as described
above (Figure 5). Figure 9a compares the penetration bias estimation of April 2011 and April 2012
for the overlapping area of the two data takes, while Figure 9b depicts the corresponding difference
between the estimated penetration biases. The general spatial pattern has been maintained from
2011 to 2012; however, the estimated penetration bias increased in coastal areas, while it decreased in
southern regions (i.e., percolation and dry snow zone). These changes may be attributed to annual
variations in climate (e.g., differences in temperature, precipitation, duration, and intensity of the
melting period) as well as to surface structure-forming weather events such as storms. Particularly in
regard of progressive climate change, annual differences in the penetration bias must be expected.
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Consequently, for the eastern test site, elevation change between April 2011 and April 2012
was calculated based on the uncorrected as well as on the corrected TanDEM-X DEM scenes. The
comparison with IceBridge laser-altimeter measurements shows a considerably higher agreement with
the corrected DEM (RMSE of 1.77 and 0.79 m corresponding to April 2011 and April 2012, respectively)
as opposed to the uncorrected DEM (RMSE of 6.35 and 5.10 m corresponding to April 2011 and April
2012, respectively). Figure 10 shows the corrected TanDEM-X DEMs together with the corresponding
comparison of the residuals based on the uncorrected and corrected DEMs (i.e., IceBridge laser-altimeter
measurements minus TanDEM-X DEM) in areas with available IceBridge data for 2011 (Figure 10a,b)
and 2012 (Figure 10c,d). It can be clearly observed that the corrected elevation data are valid across
different glacier zones.
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Figure 10. (a) Corrected TanDEM-X DEM from April 2011; (b) the corresponding residuals
(IceBridge measurements minus TanDEM-X DEM) of the uncorrected and the corrected TanDEM-X
DEM; (c) corrected TanDEM-X DEM from April 2012; and (d) the corresponding residuals of the
uncorrected and the corrected TanDEM-X DEM.

Figure 11 compares the elevation change from 2011 to 2012 for uncorrected and corrected
TanDEM-X DEMs. Based on this analysis, the ice sheet in this area decreased by an average of 0.12 m
between 2011 and 2012 taking into account the uncorrected DEMs. In comparison, the average decrease
is 0.32 m using the corrected DEMs. The absolute elevation change between April 2011 and April 2012
is quite small due to the short time span of only one year between the acquisitions. However, the
elevation changes would be underestimated by more than 60% if the DEMs had been used without
consideration and correction of penetration-related InSAR elevation bias. In addition, Figure 11 shows
that the detection of elevation changes without penetration bias correction can indicate false trends. At
high altitudes (left side of Figure 11), the trend of decreasing elevation from 2011 to 2012 is strengthened
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after penetration bias correction. In contrast, at low altitudes (right side of Figure 11), the uncorrected
elevation change depicts a decreasing elevation from 2011 to 2012, while the corrected elevation change
reveals a slight increase in height. Although several studies (e.g., [52–54]) demonstrate a continuing
decrease in elevation at the margin of the Greenland ice sheet, the comparison of the residuals in
Figure 10 verifies the reliability of the corrected elevation values in low altitudes in consideration of
the variance of the residuals. In addition, related studies do not investigate the exact same time period
of elevation changes. The high elevation changes along the outlet glacier (right side of Figure 11) are
most likely due to uncertainties in the DEMs caused by layover and foreshortening effects at steep
slopes. Nevertheless, the comparison of uncorrected and corrected elevation change demonstrates that
the penetration of SAR signals and thus the penetration bias changes from year to year and must be
taken into account, even if the data are collected in the same month outside the melting period.
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6. Discussion

The current paper proposes a pixel-based approach to estimate the X-band InSAR penetration
bias over snow and ice using the relationship between TanDEM-X penetration bias and interferometric
coherence as well as backscatter intensity without any requirement for prior information on the
characteristics of the snow pack. A multiple linear regression model based on interferometric
coherence and backscatter intensity achieved good agreement with validation data (i.e., a coefficient
of determination of R2 = 68% and an RMSE of 0.68 m (Figure 8)). Two test sites on the Northern
Greenland ice sheet were chosen to develop the approach and demonstrate its applicability as well as
transferability. In addition, the impact of X-band penetration bias on the detection of elevation changes
was evaluated.

Several studies presented approaches and techniques to estimate InSAR penetration bias over
snow and ice (e.g., [16,23,24]). However, these studies make a priori assumptions about the physical
properties of the snowpack (e.g., regarding permittivity) and often assume a uniform volume in
order to model the underlying scattering mechanisms linked to distinct glacier zones. However, this
neglects existing local variations within the zones. In contrast, the proposed approach does not require
prior knowledge, and thus enables easy application and transferability. Furthermore, the pixel-based
estimation independent of glacier zones allows for consideration of small-scale spatial and temporal
variations of penetration bias.

With regard to the transferability of penetration-related elevation bias of X-band InSAR data, the
intra- and inter-annual variations of snow and ice properties are crucial. Seasonal changes in snow
and ice properties of the glacier surface during the year cause significant changes in penetration bias.
Although these changes are well reflected in interferometric coherence and backscatter intensity, the
proposed model is based on InSAR data collected in winter and therefore cannot directly be applied to
InSAR data from the melting season (e.g., data acquired from May to September) without investigation
of additional reference data. Therefore, future work must include the application to InSAR data from
different seasons. In contrast, interannual changes in signal penetration could be detected by the
proposed method, which was only validated in the current study with TanDEM-X data acquired
outside the melt season.
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In addition to the changes of snow properties, the acquisition geometry (e.g., orbit, incidence
angle, and baseline) also plays a major role in the transferability of the penetration bias estimates.
As shown in this study, the effective baseline in particular has a strong influence on the relationship
between penetration bias and interferometric coherence (Figure 4). Since, in the particular case of
TanDEM-X, a continuous baseline change takes place due to its unique helix satellite formation, further
analyses of this relationship and the development of a suitable coherence adjustment algorithm are
essential to apply the model to the entire TanDEM-X database.

Thus, before the huge amount of TanDEM-X data available over the Greenland ice sheet can be
used to investigate and accurately quantify glacier melt, the proposed approach needs to be adapted
and extended to tackle the challenges resulting from different acquisition times and baselines.

Furthermore, future work must consider the extraction of volume decorrelation from
interferometric coherence. The correlation of the two SAR images (i.e., interferometric coherence)
suffers from several decorrelation sources [45], where decorrelation due to volume scattering is an
essential parameter regarding coherence loss over snow and ice [16]. Depending on snow and ice
properties as well as imaging geometry, the proportion of volume scattering and thus the coherence loss
varies [18]. Consequently, the extraction of the volume correlation contribution from interferometric
coherence may improve the penetration bias estimations. Moreover, an improvement of the model
should be investigated in the scope of future work, especially in the view of overestimation over bare
ice at low altitudes. Since the affected areas are relatively small with respect to the entire Greenland ice
sheet and hardly any validation data are available at the outlet glaciers over bare ice on the test sites,
further investigation with regard to different test sites and different distribution of glacier zones is
needed. In this context, additional parameters and a methodical extension (e.g., non-linear modeling
of the relationship on penetration bias) should be considered.

Nevertheless, the estimates showed good agreement with the validation data and the significant
impact of the penetration bias on the detection of elevation changes could be demonstrated. Furthermore,
the comparison of the residuals (Figure 10) shows that the DEM can be significantly improved by the
estimated penetration bias even at low altitudes.

The straightforwardness of the proposed approach without requirement for ancillary data allows
easy implementation and thus processing of large amounts of data in a global context. In addition,
penetration bias can be estimated independently of glacier zones and small-scale variations can be
captured. Based on the estimates, not only TanDEM-X elevation models can be substantially improved,
but also intra- and inter-annual variations of snow and ice properties can be investigated.

7. Conclusions

This paper proposes a pixel-based approach for X-band InSAR penetration bias estimation based
on interferometric coherence and backscatter intensity. Penetration bias was estimated at two test
sites on the Northern Greenland ice sheet using interferometric TanDEM-X data from April 2011 and
2012. The results show interannual variations in penetration bias and a significant improvement of
surface elevation data by correcting the penetration-related elevation bias. Furthermore, the significant
influence of penetration bias on elevation change detection is shown. Under consideration of these
results, estimation of penetration bias and correction of X-band InSAR surface elevation data is
inevitable in the context of glaciological research. Corrected InSAR elevation data could contribute
tremendously to understanding and exploring key issues in cryosphere research related to climate
change. The straightforwardness of the proposed approach to estimate penetration bias without the
requirement for additional information enables not only the valorization of the extensive TanDEM-X
database, but also its transferability to potential future X-band missions such as HRWS (High Resolution
Wide Swath). Its application on missions using other wavelengths (e.g., Sentinel-1) is also conceivable
taking the repeat-pass configuration into account. However, further investigations are needed to
address overestimation over bare ice and to cope with different acquisition times and continuous
baseline change in case of TanDEM-X. In this context, additional parameters and a methodical extension
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(e.g., non-linear modeling of the relationship on penetration bias) should be considered. Moreover,
future work should assess transferability in more detail, especially with respect to different acquisition
times and other test sites.
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