Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery
Abstract
:1. Introduction
2. RFM Optimization
2.1. Method
2.2. Application to Push-Frame Images
2.2.1. SkySat
2.2.2. PlanetScope (Doves)
3. DEM Extraction
- (1)
- Epipolar rectification: it consists in resampling stereo pairs based on the adjusted RFM, so that the two images have a common orientation and the matching features between the images appear along a common axis [27].
- (2)
- Stereo-matching: it consists in computing the correspondences between pixels of the image pairs. These correspondences are computed using a correlation technique (e.g., NCC, FFT) or using a Semi-global matching scheme [28]. Results are displayed as disparity maps.
- (3)
- Disparity maps fusion: intermediate results generated from each possible stereo are merged to produce a final DSM map. The fusion is performed using local approaches (e.g., mean, median) or global optimization (e.g., total variation, gradient decent) [26].
- (1)
- Multi-image matching: an object-based matching algorithm, e.g. OSGM [29], is applied directly in the object space, hence the epipolar rectification is no longer necessary; the transformation between object space and image space relies on the refined RFMs.
- (2)
- Spatial forward intersection: this leads directly to dense 3D point cloud.
- (3)
- Meshing: it consists in deriving 3D surfaces by interpolating the dense point cloud.
- (4)
- Mesh-based DEM: gridded terrain model (i.e., 2.5D raster map) is derived from the 3D mesh.
- -
- The 3D mesh model, which has rich geometric information;
- -
- The image collection (RGB spectral bands), which provides high photorealistic details about the texture of the objects;
- -
- The free-bias RFMs.
4. Results and Discussion
4.1. Morenci Mine (USA)-SkySat
4.2. Shisper Glacier (Pakistan), PlanetScope DOVE
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Overview of the SkySat and PlanetScope Push-Frame Imaging System
Appendix A.1. SkySat
Appendix A.2. PlanetScope
Dove-C | Dove-R | |
---|---|---|
Scene footprint (km) | ~24 × 8 | ~24 × 16 |
Pixel size (um) | 5.5 | 5.5 |
Frame size (pixels) | 6600 × 1100 | 6600 × 1100 |
Spectral Bands (λ nm) | Blue: 455–515 Green: 500–590 Red: 590–670 NIR: 780–860 | Blue: 464–517 Green: 547–585 Red: 650–682 NIR: 846–888 |
Appendix B
Acq. Date | ID | Acq. Time | GSD | Incidence Angle | View Angle | Azimuth Angle | Orbit Direction |
09 September 2017 | 0f36 | 05:59:49 | 3.6063 | 0.191 | 0.177 | 348 | Descending |
0f36 | 05:59:50 | 3.6063 | 0.187 | 0.173 | 348 | Descending | |
0f44 | 06:01:16 | 3.6072 | 2.69 | 2.47 | 348 | Descending | |
0f44 | 06:01:17 | 3.6073 | 2.69 | 2.47 | 348 | Descending | |
0f44 | 06:01:18 | 3.6074 | 2.69 | 2.47 | 348 | Descending | |
19 September 2017 | 1004 | 05:02:24 | 3.9588 | 3.01 | 2.75 | 12.1 | Ascending |
1004 | 05:02:25 | 3.9588 | 3.03 | 2.77 | 12.0 | Ascending | |
0e26 | 05:08:47 | 3.9093 | 4.28 | 3.91 | 12.4 | Ascending | |
0e26 | 05:08:48 | 3.9093 | 4.26 | 3.89 | 12.3 | Ascending | |
0e26 | 05:08:49 | 3.9092 | 4.27 | 3.89 | 12.3 | Ascending | |
20 September 2017 | 1033 | 05:03:08 | 3.9354 | 2.25 | 2.06 | 12.3 | Ascending |
1033 | 05:03:09 | 3.9353 | 2.19 | 2.00 | 12.5 | Ascending | |
1033 | 05:03:10 | 3.9352 | 2.13 | 1.94 | 12.1 | Ascending | |
0f24 | 05:59:40 | 3.6529 | 5.38 | 4.94 | 348 | Descending | |
0f24 | 05:59:41 | 3.653 | 5.36 | 4.91 | 348 | Descending | |
0f24 | 05:59:42 | 3.653 | 5.38 | 4.94 | 348 | Descending | |
Acq. Date | ID | Acq. Time | GSD | Incidence Angle | View Angle | Azimuth Angle | Orbit Direction |
01 August 2019 | 0f49 | 04:17:26 | 3.5188 | 2.17 | 2.00 | 348.3 | Descending |
0f49 | 04:17:27 | 3.5189 | 1.96 | 1.79 | 348.3 | Descending | |
1021 | 05:22:29 | 3.9434 | 4.36 | 3.97 | 11.9 | Ascending | |
1021 | 05:22:30 | 3.9433 | 4.38 | 3.99 | 11.9 | Ascending | |
1021 | 05:22:31 | 3.9434 | 4.39 | 4.00 | 11.9 | Ascending | |
101f | 05:26:36 | 3.9349 | 5.03 | 4.55 | 12.5 | Ascending | |
101f | 05:26:37 | 3.9348 | 5.45 | 4.97 | 12.5 | Ascending | |
07 August 2019 | 1006 | 05:24:20 | 3.9209 | 1.06 | 0.9641 | 12.1 | Ascending |
1006 | 05:24:21 | 3.9208 | 1.09 | 0.9641 | 12.1 | Ascending | |
1006 | 05:24:22 | 3.9207 | 1.07 | 0.968 | 12.1 | Ascending | |
09 August 2019 | 100c | 05:24:18 | 3.9245 | 1.11 | 1.01 | 12.1 | Ascending |
100c | 05:24:19 | 3.9244 | 1.01 | 0.909 | 12.1 | Ascending | |
100c | 05:24:21 | 3.9243 | 1.10 | 1.00 | 12.1 | Ascending | |
13 August 2019 | 100c | 05:26:09 | 3.9284 | 4.33 | 3.95 | 12.4 | Ascending |
Appendix B.1. WV-2 and GE-1 DEM Generation
Data | ID | Acq. Date | Sun Elevation |
---|---|---|---|
WV-2 Stereo pair | 05JUL19WV020500019JUL05054713 P1BS_R4C1 03171048010_02_P002 | 05 July 2019 | +68.21 |
05JUL19WV020500019JUL05054822 P1BS_R4C103171048010_02_P002 | 05 July 2019 | +68.4 | |
GE-1 Stereo pair | 19SEP29053925-P1BS- 503911006010_01_P001 | 29 September 2019 | +48.0 |
19SEP29053928-P1BS-503911006010_01_P002 | 29 September 2019 | +49.9 | |
19SEP29054028-P1BS-503911006020_01_P001 | 29 September 2019 | +48.0 | |
19SEP29054031-P1BS-503911006020_01_P002 | 29 September 2019 | +47.9 |
References
- Nagel, G.W.; de Novo, E.M.L.M.; Kampel, M. Nanosatellites applied to optical Earth observation: A review. Rev. Ambient. Água 2020, 15. [Google Scholar] [CrossRef]
- Planet Labs Education and Research Program. Available online: https://www.planet.com/markets/education-and-research/ (accessed on 4 June 2020).
- Villela, T.; Costa, C.A.; Brandão, A.M.; Bueno, F.T.; Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. Int. J. Aerosp. Eng. 2019, 2019. [Google Scholar] [CrossRef]
- Planet Labs Planet Tasking On-Demend High-Resolution Intellignece. Available online: https://learn.planet.com/rs/997-CHH-265/images/PlanetTaskingOne-pager_Letter_Print.pdf (accessed on 6 August 2020).
- D’Angelo, P.; Kuschk, G.; Reinartz, P. Evaluation of Skybox Video and Still Image products. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL–1, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Ghuffar, S. DEM generation from multi satellite PlanetScope imagery. Remote Sens. 2018, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.V.; Hu, Y. A Comprehensive Study of the Rational Function Model for Photogrammetric Processing. Photogramm. Eng. Remote. Sens. 2001, 67, 1347–1357. [Google Scholar]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogramm. Rec. 2012, 27, 58–73. [Google Scholar] [CrossRef]
- de Franchis, C.; Meinhardt-Llopis, E.; Michel, J.; Morel, J.-M.; Facciolo, G. Automatic sensor orientation refinement of Pléiades stereo images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Huang, X.; Qin, R. Multi-View Large-Scale Bundle Adjustment Method for High-Resolution Satellite Images. In Proceedings of the ASPRS 2019 Annual Conference, Denver, CO, USA, 28–30 January 2019. [Google Scholar]
- Rupnik, E.; Deseilligny, M.P.; Delorme, A.; Klinger, Y. Refined satellite image orientation in the free open-source photogrammetric tools Apero/Micmac. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 83. [Google Scholar] [CrossRef]
- Perko, R.; Raggam, H.; Schardt, M.; Roth, P.M. Very high resolution mapping with the Pleiades satellite constellation. Am. J. Remote Sens. 2018, 6, 2019. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, K.; Topan, H. DEM generation with short base length pleiades triplet. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef] [Green Version]
- Leprince, S.; Muse, P.; Avouac, J. In-Flight CCD Distortion Calibration for Pushbroom Satellites Based on Subpixel Correlation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2675–2683. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T. PRISM On-Orbit Geometric Calibration and DSM Performance. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4060–4073. [Google Scholar] [CrossRef]
- Kubik, P.; Lebègue, L.; Fourest, S.; Delvit, J.-M.; de Lussy, F.; Greslou, D.; Blanchet, G. First in-flight results of Pleiades 1A innovative methods for optical calibration. In Proceedings of the International Conference on Space Optics 2012, Ajaccio, France, 9–12 October 2012; SPIE: Bellingham, WA, USA, 2017; Volume 10564. [Google Scholar]
- Habib, A.F.; Morgan, M.; Lee, Y. Bundle Adjustment with Self–Calibration Using Straight Lines. Photogramm. Rec. 2002, 17, 635–650. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, K.; Huang, W. Auto-calibration of GF-1 WFV images using flat terrain. ISPRS J. Photogramm. Remote Sens. 2017, 134, 59–69. [Google Scholar] [CrossRef]
- Hu, Y.; Tao, V.; Croitoru, A. Understanding the Rational Function Model: Methods and Applications. In Proceedings of the XXth International Society for Photogrammetry and Remote Sensing Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by Rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y. A generic method for RPC refinement using ground control information. Photogramm. Eng. Remote Sens. 2009, 75, 1083–1092. [Google Scholar] [CrossRef] [Green Version]
- Fraser, C.; Hanley, H. Bias Compensation in Rational Functions for IKONOS Satellite Imagery. Photogramm. Eng. Remote Sens. 2003, 69. [Google Scholar] [CrossRef]
- d’Angelo, P.; Máttyus, G.; Reinartz, P. Skybox image and video product evaluation. Int. J. Image Data Fusion 2016, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Altena, B.; Mascaro, J. River-ice and water velocities using the Planet optical cubesat constellation. Hydrol. Earth Syst. Sci. 2019, 23, 4233–4247. [Google Scholar] [CrossRef] [Green Version]
- Perko, R.; Raggam, H.; Roth, P.M. Mapping with Pléiades—End-to-End Workflow. Remote Sens. 2019, 11, 2052. [Google Scholar] [CrossRef] [Green Version]
- Fusiello, A.; Trucco, E.; Verri, A. A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 2000, 12, 16–22. [Google Scholar] [CrossRef]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Bethmann, F.; Luhmann, T. Semi-Global Matching in Object Space. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-3/W2, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Jung, C.; Ke, P.; Song, H.; Hwang, J. Automatic Contrast-Limited Adaptive Histogram Equalization With Dual Gamma Correction. IEEE Access 2018, 6, 11782–11792. [Google Scholar] [CrossRef]
- Mining Technology Morenci Copper Mine, Arizona 2020.
- Carswell, W.J., Jr. The 3D Elevation Program: Summary for Arizona; U.S. Geological Survey: Reston, VA, USA, 2014.
- Pierrot Deseilligny, M.; Clery, I. Apero, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of Set of Images. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 3816, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Rupnik, E.; Daakir, M.; Pierrot Deseilligny, M. MicMac—A free, open-source solution for photogrammetry. Open Geospatial Data Softw. Stand. 2017, 2, 14. [Google Scholar] [CrossRef]
- Scovanner, P.; Ali, S.; Shah, M. A 3-Dimensional Sift Descriptor and Its Application to Action Recognition. In Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, 23–28 September 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 357–360. [Google Scholar]
- Agisoft Metashape Professional; Version 1.6.0.; Agisoft LLC: St. Petersburg, Russia, 2019.
- Aati, S.; Rupnik, E.; Nejim, S. Comparative study of photogrammetry software in industrial field. Rev. Française Photogrammétrie Télédétection 2020, 1, 37–48. [Google Scholar]
- Bhambri, R.; Watson, C.S.; Hewitt, K.; Haritashya, U.K.; Kargel, J.S.; Pratap Shahi, A.; Chand, P.; Kumar, A.; Verma, A.; Govil, H. The hazardous 2017–2019 surge and river damming by Shispare Glacier, Karakoram. Sci. Rep. 2020, 10, 4685. [Google Scholar] [CrossRef] [Green Version]
- Rashid, I.; Majeed, U.; Jan, A.; Glasser, N. The January 2018 to September 2019 surge of Shisper Glacier, Pakistan, detected from remote sensing observations. Geomorphology 2019, 351, 106957. [Google Scholar] [CrossRef]
- Shah, A.; Ali, K.; Syed, M.; Nizami, I.; Jan, I.; Hussain; Begum, F. Risk assessment of Shishper Glacier, Hassanabad Hunza, North Pakistan. J. Himal. Earth Sci. 2019, 52, 1–11. [Google Scholar]
- RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0; GLIMS Technical Report; Global Land Ice Measurements from Space: Boulder, CO, USA, 2017. [Google Scholar]
- Santillan, J.; Makinano-Santillan, M. Vertical Accuracy Assessment Of 30-M Resolution Alos, Aster, And Srtm Global Dems Over Northeastern Mindanao, Philippines. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 149–156. [Google Scholar] [CrossRef]
- Aguilar, M.Á.; del Mar Saldaña, M.; Aguilar, F.J. Generation and Quality Assessment of Stereo-Extracted DSM From GeoEye-1 and WorldView-2 Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1259–1271. [Google Scholar] [CrossRef]
- USGS Shuttle Radar Topography Mission. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-void?qt-science_center_objects=0#qt-science_center_objects (accessed on 4 May 2020).
- AATI, S. Textured 3D Model over Morenci Mine and Shisper Glacier Using SkySat and PlanetScope Satellite Imagery 2020. Available online: https://doi.org/10.5281/zenodo.4009926 (accessed on 6 August 2020).
- AATI, S. Topography Extraction and Topographic Change Measurements Using PlanetScope Data: Shisper Glacier (Pakistan) 2020. Available online: https://doi.org/10.5281/zenodo.4039798 (accessed on 6 August 2020).
- Murthy, K.; Shearn, M.; Smiley, B.D.; Chau, A.H.; Levine, J.; Robinson, M.D. SkySat-1: Very high-resolution imagery from a small satellite. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVIII, Amsterdam, The Netherlands, 22–25 September 2014; Meynart, R., Neeck, S.P., Shimoda, H., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9241, pp. 367–378. [Google Scholar]
- Raggam, H. Surface mapping using image triplets. Photogramm. Eng. Remote Sens. 2006, 72, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G. Evaluation Of Pleiades-1a Triplet On Trento Testfield. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J. Photogramm. Remote Sens. 2015, 100, 35–47. [Google Scholar] [CrossRef]
- Planet Team Planet Satellite Imagery Prodcuts 2020. Available online: https://storage.googleapis.com/planet-ditl/day-in-the-life/index.html (accessed on 6 August 2020).
- Neigh, C.S.R.; Masek, J.G.; Nickeson, J.E. High-Resolution Satellite Data Open for Government Research. Eos. Trans. Am. Geophys. Union 2013, 94, 121–123. [Google Scholar] [CrossRef] [Green Version]
Acq. Date and Product Level | Image ID | Nb. of Scenes | View Angle (°) | Sun Elev. (°) | GSD (m) |
---|---|---|---|---|---|
28 January 2019 | s106_20190128T204710Z | 51 (17/detector) | 26.2–28 | 35.6 | 0.8–0.9 |
s106_20190128T204819Z | 54 (18/detector) | 25.9–27.8 | 35.6 | 0.8–0.9 | |
s106_20190128T204744Z | 69 (23/detector) | 8–8.3 | 35.5 | 0.7 |
Parameter | 2017-DEM | 2019-DEM | |
---|---|---|---|
Nb. of Images | 16 | 14 | |
Overlapping threshold | 20% | ||
Coverage area (km2) | 449 | 372 | |
Re-projection error (pix) | 0.385 | 0.351 | |
Tie points | 171,558 | 121,177 | |
Average Tie point multiplicity | 2.65 | 2.54 | |
Dense point cloud | 11,291,888 | 8,404,358 | |
DEM GSD (m) | 9 | ||
Mesh | faces | 2,258,343 | 1,680,413 |
vertices | 1,133,266 | 842,735 | |
Texture | 4096 × 4096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aati, S.; Avouac, J.-P. Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sens. 2020, 12, 3418. https://doi.org/10.3390/rs12203418
Aati S, Avouac J-P. Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sensing. 2020; 12(20):3418. https://doi.org/10.3390/rs12203418
Chicago/Turabian StyleAati, Saif, and Jean-Philippe Avouac. 2020. "Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery" Remote Sensing 12, no. 20: 3418. https://doi.org/10.3390/rs12203418
APA StyleAati, S., & Avouac, J. -P. (2020). Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sensing, 12(20), 3418. https://doi.org/10.3390/rs12203418