Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Meteorological Data
2.1.2. LAI Data
2.1.3. Land-cover Data
2.1.4. GPP Data
2.2. Modeling
2.2.1. TL-LUE Model
2.2.2. Modeling Scenarios
3. Results
3.1. Spatiotemporal Distributions of Annual Radiation in China
3.2. Spatial Distribution of GPP in China over the Period 1981–2012
3.3. Spatial Distribution of Diffuse Radiation Contribution to Terrestrial Ecosystem GPP
3.4. Impact of Radiation Changes on GPP
3.4.1. Simulated Interannual Variability of Total GPP in China
3.4.2. Spatial Distribution of Radiation Effects on GPP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Le, Q.C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar]
- Yuan, W.P.; Cai, W.W.; Xia, J.Z. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 2014, 192–193, 108–120. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Beringer, J.; North, P.; Hutley, L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Progr. Phys. Geogr. 2012, 36, 209–237. [Google Scholar] [CrossRef]
- Cohan, D.S.; Xu, J.; Greenwald, R.; Bergin, M.H.; Chameides, W.L. Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity. Glob. Biogeochem. Cycle 2002, 16, 37. [Google Scholar] [CrossRef]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquhar, G.D.; Roderick, M.L. Pinatubo diffuse light and the carbon cycle. Science 2003, 299, 1997–1998. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.H.; Fuentes, J.D.; Shugart, H.H.; Staebler, R.M.; Black, T.A. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forest. J. Geophys. Res. 1999, 104, 31421–31434. [Google Scholar] [CrossRef]
- Gu, L.H.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. 2002, 107, ACL2-1–ACL2-23. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.H.; Baldocchi, D.D.; Wofsy, S.C.; Munger, J.W.; Michalsky, J.J.; Urbanski, S.P.; Boden, T.A. Response of a deciduous forest to the mount Pinatubo eruption: Enhanced photosynthesis. Science 2003, 299, 2035–2038. [Google Scholar] [CrossRef] [Green Version]
- Black, K.; Davis, P.; Lynch, P.; Jones, M.; McGettigan, M.; Osborne, B. Long-term trends in solar irradiance in ireland and their potential effects on gross primary productivity. Agric. For. Meteorol. 2006, 141, 118–132. [Google Scholar] [CrossRef]
- Chen, M.; Zhuang, Q.L. Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus B 2014, 66, 21808. [Google Scholar] [CrossRef] [Green Version]
- He, M.Z.; Ju, W.M.; Zhou, Y.L.; Chen, J.M.; He, H.L.; Wang, S.Q.; Wang, H.M.; Guan, D.X.; Yan, J.H.; Li, Y.N.; et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary production. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Wang, S.Q.; Huang, K.; Yan, H.; Yan, H.M.; Zhou, L.; Wang, H.M.; Zhang, J.H.; Yan, J.H.; Zhao, L.; Wang, Y.F.; et al. Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China. Ecol. Complex. 2015, 23, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Ibrom, A.; Bauer-Gottwein, P.; Garcia, M. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest. Agric. For. Meteorol. 2018, 248, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, S.Q.; da Rocha, H.R.; Rap, A.; Bonal, D.; Butt, N.; Coupe, N.R.; Shugart, H.H. Simulation of the unexpected photosynthetic seasonality in Amazonian evergreen forests by using an improved diffuse fraction-based light use efficiency model. J. Geophys. Res. Biogeosci. 2017, 122, 3014–3030. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Shen, R.Q.; Wang, Y.W.; Li, X.Q.; Liu, S.G.; Liang, S.L.; Chen, J.M.; Ju, W.M.; Zhang, L.; Yuan, W.P. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2019, 126, 1–31. [Google Scholar]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, A. Observed long-term variations of solar irradiance at the earth’s surface. Space Sci. Rev. 2006, 125, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.Y.; Hayasaka, T.; Ohmura, A.; Chen, Z.H.; Wang, B.; Zhao, J.Q.; Che, H.Z.; Xu, L. Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. 2008, 47, 1006–1016. [Google Scholar] [CrossRef]
- Norris, J.R.; Wild, M. Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover solar “dimming” and solar “brightening”. J. Geophys. Res. 2009, 114, D15. [Google Scholar] [CrossRef]
- Qi, Y.; Fang, S.B.; Zhou, W.Z. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecol. Sin. 2014, 34, 7444–7453. (In Chinese) [Google Scholar]
- Che, H.Z.; Shi, G.Y.; Zhang, X.Y.; Arimoto, R.; Zhao, J.Q.; Xu, L.; Wang, B.; Chen, Z.H. Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett. 2005, 32, 2341–2352. [Google Scholar] [CrossRef]
- Qian, Y.; Kaiser, D.P.; Leung, L.R.; Xu, M. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett. 2006, 33, L01812. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.B.; Yang, D.W. Climatic factors influencing changing pan evaporation across China from 1961 to 2001. J. Hydrol. 2012, 414–415, 184–193. [Google Scholar] [CrossRef]
- Ren, X.L.; He, H.L.; Zhang, L.; Zhou, L.; Yu, G.R.; Fan, J.W. Spatiotemporal variability analysis of diffuse radiation in China during 1981–2010. Ann. Geophys. 2013, 31, 277–289. [Google Scholar] [CrossRef] [Green Version]
- He, X.Z.; Zhou, T.; Jia, G.S.; Zhang, Z.Y.; Li, X.J.; Zhao, C.; Feng, S.H. Modeled effects of changes in the amount and diffuse fraction of PAR on forest GPP. J. Nat. Res. 2011, 26, 619–634. [Google Scholar]
- Li, D.Q.; Zhou, Y.L.; Ju, W.M.; Wang, H.M.; Liu, Y.B.; Wu, X.C. Modelling the effects of changes in solar radiation on gross primary production in subtropical evergreen needle-leaf plantations. Chin. J. Plant Ecol. 2014, 38, 219–230. [Google Scholar]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. The ASCE Standardized Reference Evapotranspiration Equation; Final Report; Environmental and Water Resources Institute of the American Society of Civil Engineers: Reston, VA, USA, 2005. [Google Scholar]
- Ångström, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Ren, X.L.; He, H.L.; Zhang, L.; Yu, G.R. Global radiation, photosynthetically active radiation, and the diffuse component dataset of China, 1981–2010. Earth Syst. Sci. Data 2018, 10, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.S.; Ersi, K.; Yang, J.P.; Lu, S.H.; Zhao, W.Z. Validation of five global radiation models with measured daily data in China. Energy Conv. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Roderick, M.L. Estimating the diffuse component from daily and monthly measurements of global radiation. Agric. For. Meteorol. 1999, 95, 169–185. [Google Scholar] [CrossRef]
- Singh, U.P. Diffuse Radiation Calculation Methods. Ph.D. Thesis, Science Arizona State University, Tempe, AZ, USA, 2016. [Google Scholar]
- Liu, Y.; Liu, R.G.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. 2012, 117, G04003. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T. Simultaneous estimation of both hydrological and ecological parameters in an ecohydrological model by assimilating microwave signal. J. Geophys. Res. Atmos. 2014, 119, 8839–8857. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, X.J.; Yu, G.R.; He, N.P.; Wang, Q.F.; Tian, J. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agric. For. Meteorol. 2014, 195–196, 32–37. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; He, H.L.; Wang, Q.F.; Chen, Z.; Gao, Y.N.; Zhang, Y.P.; Zhang, J.H.; Yan, J.H.; Wang, H.M.; et al. Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Glob. Planet. Chang. 2014, 118, 52–61. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.M.; Ciais, P.; Viovy, N.; Liu, R.G.; Liu, Y.; Lu, X.H. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Running, S.; Thornton, P.; Nemani, R.; Glassy, J. Global terrestrial gross and net primary productivity from the earth observing system. Methods Ecosyst. Sci. 2000, 3, 44–57. [Google Scholar]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Modell. 1999, 124, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.C.; Ju, W.M.; Zhou, Y.L.; He, M.Z.; Law, B.E.; Black, T.A.; Margolis, H.A.; Cescatti, A.; Gu, L.H.; Montagnani, L.; et al. Performance of linear and nonlinear two-leaf light use efficiency models at different temporal scales. Remote Sens. 2015, 7, 2238–2278. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.L.; Wu, X.C.; Ju, W.M.; Chen, J.M.; Wang, S.Q.; Yuan, W.P.; Black, T.A.; Jassal, R.; Ibrom, A.; Han, S.J.; et al. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites. J. Geophys. Res. Biogeosci. 2016, 121, 1045–1072. [Google Scholar] [CrossRef]
- Zan, M.; Zhou, Y.L.; Ju, W.M.; Zhang, Y.G.; Zhang, L.M.; Liu, Y.B. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data. Sci. Total Environ. 2018, 613–614, 977–989. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Cheng, C.C.K.; He, J. Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmos. Chem. Phys. 2011, 11, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.G.; Wu, H.P.; Ou, T.H.; Chen, D.L. A new perspective on solar dimming over the Tibetan Plateau. Int. J. Climatol. 2019, 39, 302–316. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Liang, S.L.; Yu, G.R.; Yuan, W.P.; Cheng, X.; Xia, J.Z.; Zhao, T.B.; Feng, J.M.; Ma, Z.G.; Ma, M.G.; et al. Estimation of gross primary production over the terrestrial ecosystems in China. Ecol. Modell. 2013, 261–262, 80–92. [Google Scholar] [CrossRef]
- Wang, Q.F.; Zheng, H.; Zhu, X.J.; Yu, G.R. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci. Bull. 2015, 60, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.Q.; Liu, J.Y. Comparative study on net productivity of vegetation in China. Chin. Sci. Bull. 2008, 53, 317–326. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycle 2005, 19, GB2027. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Acta Phytoecol. Sin. 2007, 31, 413–424. (In Chinese) [Google Scholar]
- Feng, X.; Liu, G.H.; Chen, J.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manag. 2007, 85, 563–573. [Google Scholar] [CrossRef]
- Xiao, X.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; McGuire, A.D.; Helfrich, J. Net primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and atmospheric CO2 concentration. Acta Phytoecol. Sin. 1998, 22, 97–118. [Google Scholar]
- Tao, B.; Li, K.R.; Shao, X.M.; Cao, M.K. The temporal and spatial patterns of terrestrial net primary productivity in China. J. Geogr. Sci. 2003, 13, 163–171. [Google Scholar]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its possible causes and possible agricultural consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T. Atmosphere, aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Li., Z.; Xia, X.; Cribb, M. Aerosol optical properties and their radiative effects in northern China. J. Geophys. Res. Atmos. 2007, D22S01. [Google Scholar] [CrossRef]
- Qiu, J.H.; Yang, L.Q. Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos. Environ. 2000, 34, 603–609. [Google Scholar]
- Wild, M.; Trüssel, B.; Ohmura, A. Global dimming and brightening: An update beyond 2000. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Hicks, S.R.A.; Brisk, D.D.; Call, C.A. Co-existence of a perennial C3 bunchgrass in a C4 dominated grassland: An evaluation of gas exchange characteristics. Photosynthetica 1990, 24, 63–74. [Google Scholar]
- Liu, Y.B.; Xiao, J.F.; Ju, W.M.; Zhu, G.L.; Wu, X.C.; Fan, W.L.; Li, D.Q.; Zhou, Y.L. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 2018, 206, 174–188. [Google Scholar] [CrossRef]
Parameters | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
---|---|---|---|---|---|---|---|---|
a | 0.234 | 0.234 | 0.214 | 0.213 | 0.226 | 0.238 | 0.230 | 0.232 |
b | 0.501 | 0.505 | 0.527 | 0.479 | 0.450 | 0.457 | 0.498 | 0.556 |
Samples | 78.503 | 86.281 | 195.870 | 165.151 | 166.877 | 54.146 | 62.710 | 124.354 |
R2 | 0.714 | 0.665 | 0.726 | 0.733 | 0.739 | 0.749 | 0.788 | 0.687 |
Root Mean Square Error (RMSE, MJ m−2 d−1) | 2.180 | 2.219 | 2.073 | 2.130 | 2.394 | 2.378 | 2.442 | 3.056 |
Parameters | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
---|---|---|---|---|---|---|---|---|
c | −2.936 | −3.454 | −3.760 | −3.976 | −3.759 | −3.418 | −3.513 | −2.850 |
d | 5.657 | 6.161 | 6.778 | 7.338 | 7.054 | 6.647 | 6.796 | 5.741 |
Samples | 26.788 | 11.483 | 79.589 | 46.943 | 59.732 | 15.704 | 19.647 | 37.161 |
R2 | 0.695 | 0.712 | 0.707 | 0.811 | 0.779 | 0.696 | 0.797 | 0.630 |
RMSE (MJ m−2 d−1) | 1.727 | 1.955 | 2.115 | 1.596 | 1.715 | 2.254 | 1.821 | 2.516 |
Name | Latitude (°) | Longitude (°) | Years | Vegetation Types |
---|---|---|---|---|
Xishuangbanna (XSBN) | 21.95 | 101.2 | 2003–2012 | BF |
Dinghushan (DHS) | 23.17 | 112.53 | 2003–2011 | BF |
Ailaoshan (ALS) | 24.54 | 101.03 | 2009–2011 | BF |
Luancheng (LC) | 37.88 | 114.68 | 2009–2012 | CROP |
Yucheng (YC) | 36.83 | 116.57 | 2003–2012 | CROP |
Haibei2 (HB) | 37.61 | 101.33 | 2003–2012 | GRASS |
Neimeng (NM) | 43.53 | 116.67 | 2004–2012 | GRASS |
Duolun (DL) | 42.03 | 116.28 | 2010–2012 | GRASS |
Dangxiong (DX) | 30.5 | 91.07 | 2004–2011 | GRASS |
Changbaishan (CBS) | 42.4 | 128.1 | 2003–2011 | MF |
Qianyanzhou (QYZ) | 26.73 | 115.07 | 2003–2012 | NF |
Huitong (HT) | 26.79 | 109.59 | 2008–2012 | NF |
Haibei1 (HBG) | 37.67 | 101.33 | 2003–2012 | Shrub |
Model Types | Model | ENF | EBF | DNF | DBF | MF | Shrub | GRASS | CROP | Time | Resolution | Annual Total GPP | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TL-LUE | 1.210 (±49) | 1.720 (±32) | 798 (±52) | 1.090 (±32) | 1.620 (±46) | 625 (±42) | 210 (±24) | 1.308 (±72) | 1981–2012 | 0.0727° | 7.64 (±0.33) | This study | |
TL-LUE | 2007–2011 | 0.0727° | 7.17 | [44] | |||||||||
MODIS | 2001–2010 | 10 km | 5.47 | [47] | |||||||||
EC-LUE | 992 | 1.430 | 829 | 1.083 | 1.273 | 244–775 | 382 | 948 a | 2001–2010 | 10 km | 6.04 | [47] | |
GLOPEM | 710 a | 1.436 a | 734 a | 902 a | 1.338 a | 1.232 a | 290 a | 744 a | 1981–2000 | 8 km | 5.52–6.62 a | [49] | |
LUE model | GEOLUE | 1.172 a | 2.172 a | 1.314 a | 1.130 a | 1.914 a | 1.446 a | 356 a | 724 a | 2000–2004 | 8 km | 5.68 a | [49] |
CASA | 928 a | 1.122 a | 996 a | 1.030 a | 1.092 a | 984 a | 490 a | 730 a | 1982–2003 | 8 km | 5.14–5.92 a | [49] | |
CASA | 491 a | 836 a | 569 a | 490 a | 592 a | 516 a | 289 a | 853 a | 1982–1999 | 0.1° | 2.66–3.16 a | [50] | |
CASA | 734 a | 1.972 a | 878 a | 1.286 a | 735 a | 207–1015 a | 1.782 a | 1989–1993 | 8 km | 6.24 a | [51] | ||
BEPS | 938 a | 1.480 a | 844 a | 998 a | 1.119 a | 726 a | 245 a | 872 a | 2001 | 1 km | 4.418 a | [52] | |
Process model | TEM | 1.246 a | 168 a | 384–470 a | 1993–1996 | 0.5° | 7.31 a | [53] | |||||
CEVSA | 716 a | 1.436 a | 704 a | 944 a | 1.414 a | 1.400 a | 416 a | 1.154 a | 1981–1998 | 0.5° | 6.18 a | [54] | |
CEVSA | 972 a | 1.746 a | 690 a | 1.248 a | 846 a | 982 a | 696 a | 1.212 a | 1980–2000 | 10 km | 6.26–7.36 a | [49] | |
GEOPRO | 498 a | 1.244 a | 536 a | 632 a | 1.250 a | 1.122 a | 336 a | 688 a | 2000 | 4 km | 4.84 a | [49] | |
Others | Geographical assessment | 2001–2010 | 1 km | 7.78 a | [48] | ||||||||
Model tree ensemble | 2001–2010 | 0.5° | 6.06 a | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wu, X.; Ju, W.; Zhang, L.; Chen, Z.; He, W.; Liu, Y.; Shen, Y. Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model. Remote Sens. 2020, 12, 3355. https://doi.org/10.3390/rs12203355
Zhou Y, Wu X, Ju W, Zhang L, Chen Z, He W, Liu Y, Shen Y. Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model. Remote Sensing. 2020; 12(20):3355. https://doi.org/10.3390/rs12203355
Chicago/Turabian StyleZhou, Yanlian, Xiaocui Wu, Weimin Ju, Leiming Zhang, Zhi Chen, Wei He, Yibo Liu, and Yang Shen. 2020. "Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model" Remote Sensing 12, no. 20: 3355. https://doi.org/10.3390/rs12203355
APA StyleZhou, Y., Wu, X., Ju, W., Zhang, L., Chen, Z., He, W., Liu, Y., & Shen, Y. (2020). Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model. Remote Sensing, 12(20), 3355. https://doi.org/10.3390/rs12203355