Cloud Detection of SuperView-1 Remote Sensing Images Based on Genetic Reinforcement Learning
Abstract
:1. Introduction
2. Methods
2.1. Selection of PES Factor
2.2. Genetic Reinforcement Learning
2.2.1. Reward–Penalty Rule
2.2.2. Evolutionary Process
- (1)
- The fitness score scorei of each individual in the population is calculated;
- (2)
- The probability Pi of each individual to be retained in the next group is calculated (1 < i < G);
- (3)
- The cumulative probability of each individual to be selected is calculated, as shown in Formula (17);
- (4)
- A uniformly distributed random number r is generated within [0,1];
- (5)
- If r < Q1, individual 1 is selected; otherwise, individual i is selected (Qi-1 < r < Qi);
- (6)
- Steps (4) and (5) are repeated G times, where G is the population size.
2.3. Morphological Improvement
3. Results
3.1. Data Set
3.2. Evaluation Criterion
3.3. Experimental Setup
3.4. Validity of the Proposed Method
3.5. Comparative Experiment
4. Discussion
4.1. The Effectiveness of Combining RL and a GA
4.2. The Usefulness of PES
4.3. The Error Sources of the Proposed Method
4.4. The Impact of Sensor Artifacts
4.5. Applicability of the Proposed Method in the Future
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACCA | Automatic Cloud Cover Algorithm |
AVHRR | Advanced Very High-Resolution Radar |
DL | Deep Learning |
FCN | Fully Convolutional Networks |
Fmask | Function of Mask |
FN | False Negative |
FP | False Positive |
FPGA | Field Programmable Gate Array |
FPR | False Positive Rate |
GA | Genetic Algorithm |
HSV | Hue-Saturation-Value |
Mask-RCNN | Mask Region Convolutional Neural Network |
MSCFF | Multi-Scale Convolutional Feature Fusion |
OA | Overall Accuracy |
PES | Pixel Environmental State |
PR | Precision-Recall |
RF | Random Forest |
RL | Reinforcement Learning |
ROC | Receiver Operating Characteristic |
RS-Net | Remote Sensing Network |
SVM | Support Vector Machine |
TN | True Negative |
TP | True Positive |
Appendix A. Pseudocode for the Genetic Reinforcement Learning
Algorithm A1 genetic reinforcement learning |
Input: the original remote sensing image I, ground truth Tr, the weight of reward u, the weight of penalty v, crossover rate Cr, mutation rate Mu. Output: the final cloud detection result M. Procedures: Step1: Convert the image I from RGB to HSV; Step2: Calculate H, V and S of each pixel in the training image according Equations (3)–(5); Step3: Discretize H, V and S; Step4: Calculate the PES matrix E according to Equation (10); Step5: Construct “PES-action” strategy D according to Equation (11); Step6: Combine 90 D into a strategy set P; Step7: Randomly initialize the action value ai in P; Step8: Calculate the fitness score score for each strategy according Equation (14); Step9: Perform roulette, crossover and mutation; Step10: Iterate the procedure of step8–step9; Step11: Select the optimal strategy D* with the highest score score* according to Equation (15); Step12: Calculate H, V and S of each pixel in the testing image according Equations (3)–(5); Step13: Calculate the PES value ei for each pixel; Step14: Find the action value ai based on the optimal strategy D*; Step15: Iterate the procedure of step14; Step16: Refine the result M* according Equations (18) and (19). |
References
- Li, H.; Zheng, H.; Han, C.; Wang, H.; Miao, M. Onboard spectral and spatial cloud detection for hyperspectral remote sensing images. Remote Sens. 2018, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Shi, Z. Ship detection in spaceborne optical image with svd networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1–14. [Google Scholar] [CrossRef]
- Shen, H.; Pan, W.D.; Wang, Y. A Novel Method for Lossless Compression of Arbitrarily Shaped Regions of Interest in Hyperspectral Imagery. In Proceedings of the IEEE Southeast Conference, Fort Lauderdale, FL, USA, 9–12 April 2015. [Google Scholar] [CrossRef]
- Mercury, M.; Green, R.; Hook, S.; Oaida, B.; Wu, W.; Gunderson, A.; Chodas, M. Global cloud cover for assessment of optical satellite observation opportunities: A HyspIRI case study. Remote Sens. Environ. 2012, 126, 62–71. [Google Scholar] [CrossRef]
- Shi, T.; Xu, Q.; Zou, Z.; Shi, Z. Automatic Raft Labeling for Remote Sensing Images via Dual-Scale Homogeneous Convolutional Neural Network. Remote Sens. 2018, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.; Duenas, E. The International Satellite Cloud Climatology Project (ISCCP) Web site—An online resource for research. Bull. Am. Meteorol. 2004, 85, 167–172. [Google Scholar] [CrossRef]
- Kinter, J.L.; Shukla, J. The Global Hydrologic and Energy Cycles: Suggestions for Studies in the Pre-Global Energy and Water Cycle Experiment (GEWEX) Period. Bull. Am. Meteorol. Soc. 2013, 71, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Mandrake, L.; Frankenberg, C.; O’Dell, C.W.; Osterman, G.; Wennberg, P.; Wunch, D. Semi-autonomous sounding selection for OCO-2. Atmos. Meas. Tech. 2013, 6, 2851–2864. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Shi, Z. Utilizing multilevel features for cloud detection on satellite imagery. Remote Sens. 2018, 10, 1853. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, D.W.; Haar, T.H.V. A bi-spectral method for cloud parameter determination. Mon. Weather Rev. 1977, 105, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from A VHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Irish, R.R. Landsat 7 automatic cloud cover assessment. In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery Vi; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 4049, pp. 348–356. [Google Scholar] [CrossRef]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Jia, L.; Wang, X.; Wang, F. A Cloud Detection Approach Based on Band Operation and Texture Features for GF-1 Multi-spectral Data. Remote Sens. Inf. 2018, 33, 62–68. [Google Scholar] [CrossRef]
- Cai, Y.; Fu, F. Cloud recognition method and software design based on texture features of satellite remote sensing images. J. Atmos. Sci. 1999, 22, 416–422. [Google Scholar] [CrossRef]
- Welch, R.M.; Sengupta, S.K.; Chen, D.W. Cloud field classification based upon high-spatial resolution textural feature, 1. Gray-level co-occurrence matrix approach. J. Geophys. Res. 1988, 93, 12663–12681. [Google Scholar] [CrossRef]
- Tian, P.; Guang, Q.; Liu, X. Cloud detection from visual band of satellite image based on variance of fractal dimension. J. Syst. Eng. Electron. 2019, 30, 485–491. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Ting, B.; Deren, L.; Kaimin, S.; Yepei, C.; Wenzhuo, L. Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sens. 2016, 8, 715. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Zhang, Y.; Tong, X. Cloud extraction from Chinese high resolution satellite imagery by probabilistic latent semantic analysis and object-based machine learning. Remote Sens. 2016, 8, 963. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sens. Environ. 2019, 230, 111203. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Gatebe, C.; Tanikawa, T.; Hori, M.; Shimada, R.; Aoki, T.; Stamnes, K. New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ. 2018, 219, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Latry, C.; Panem, C.; Dejean, P. Cloud detection with SVM technique. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 448–451. [Google Scholar] [CrossRef]
- Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42. [Google Scholar] [CrossRef]
- Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a support vector machine based cloud detection method for modis with the adjustability to various conditions. Remote Sens. Environ. 2018, 205, 390–407. [Google Scholar] [CrossRef]
- Luis, G.C.; Gustavo, C.V.; Julia, A.L. New cloud detection algorithm for multispectral and hyperspectral images: Application to ENVISAT/MERIS and PROBA/CHRIS sensors. In Proceedings of the 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 2746–2749. [Google Scholar] [CrossRef]
- Yu, W.; Cao, X.; Xu, L.; Bencherkei, M. Automatic cloud detection for remote sensing image. Chin. J. Sci. Instrum. 2006, 27, 2184–2186. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2004, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Shen, Y.; Liu, J.; He, G.; Chen, J.; Liu, P.; Qian, J.; Li, J. Cloud detection for FY meteorology satellite based on ensemble thresholds and random forests approach. Remote Sens. 2019, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel cloud detection in remote sensing images based on deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3631–3640. [Google Scholar] [CrossRef]
- Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
- Mohajerani, S.; Krammer, T.A.; Saeedi, P. Cloud detection algorithm for remote sensing images using fully convolutional neural networks. In Proceedings of the 2018 IEEE 20th International Workshop on Multimedia Signal Processing, Vancouver, BC, Canada, 29–31 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Goff, M.L.; Tourneret, J.Y.; Wendt, H.; Ortner, M.; Spigai, M. Deep learning for cloud detection. In Proceedings of the 8th International Conference of Pattern Recognition Systems, Madrid, Spain, 11–13 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud detection of remote sensing images by deep learning. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 701–704. [Google Scholar] [CrossRef]
- Mendili, L.E.; Puissant, A.; Chougrad, M.; Sebari, I. Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images. Remote Sens. 2020, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, J.H.; Jacobsen, R.H.; Inceoglu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens. Environ. 2019, 229, 247–259. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Shu, J.; Wang, P. Meteorological Dictionary; Shanghai Lexicographical Publishing House: Shanghai, China, 1985. [Google Scholar]
- Ellen, M.; Hothem, D.; John, M.I. The Multispectral Imagery Interpretability Rating Scale (MS IIRS). In ASPRS/ACSM Annual Convention & Exposition Technical Papers; Bethesda: Rockville, MD, USA, 1996; Volume 1, pp. 300–310. [Google Scholar]
- Cao, Q. Research on Availability Evaluation Intelligent Method of Satellite Remote Sensing Image. Ph.D. Thesis, Beihang University, Beijing, China, 2008. [Google Scholar]
- Wu, X. Research on Several Key Issues of Availability Evaluation Method of Satellite Remote Sensing Image. Ph.D. Thesis, Beihang University, Beijing, China, 2010. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Ralambondrainy, H. A conceptual vision of the K-means algorithm. Pattern Recognit. Lett. 1995, 16, 1147–1157. [Google Scholar] [CrossRef]
- Roerdink, J.B.T.M.; Meijster, A. The Watershed Transform: Definitions, Algorithms and Parallelization Strategies. Fundam. Inform. 2000, 41, 187–228. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Koh, T.S. Robust edge detection. Pattern Recognit. 2003, 36, 2083–2091. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r-cnn. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 386–397. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 2014, 4, 357–361. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision, Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Chen, Y. A Genetic Algorithm-Based Urban Cluster Automatic Threshold Method by Combining VIIRS DNB, NDVI and NDBI to Monitor Urbanization. Remote Sens. 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Szepesvári, C. Algorithms for reinforcement learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Marvin, M. Steps toward artificial intelligence. Proc. IRE 1963, 49, 8–30. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, H. Intelligent blood cell image segmentation based on reinforcement learning. Comput. Mod. 2013, 2, 31–34. [Google Scholar] [CrossRef]
- Li, K.; Li, M.; Zhang, W. New method of image segmentation based on improved genetic algorithm. Appl. Res. Comput. 2009, 26, 4364–4367. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Publishing House of Electronics Industry: Beijing, China, 2009; pp. 604–607. [Google Scholar]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2018; pp. 371–373. [Google Scholar]
- Whitley, D.A. Genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
Spectral Band No. | Spectral Name | Spectral Range (μm) | Spatial Resolution (m) |
---|---|---|---|
Band 1 | Blue | 0.45–0.52 | 2.1 |
Band 2 | Green | 0.52–0.60 | 2.1 |
Band 3 | Red | 0.63–0.69 | 2.1 |
Band 4 | Near Infrared | 0.76–0.90 | 2.1 |
V | H | S | V+H | V+S | H+S | V+H+S | |
---|---|---|---|---|---|---|---|
Precision | 90.66% | 83.34% | 83.16% | 93.49% | 94.59% | 92.57% | 97.36% |
Recall | 76.38% | 63.74% | 51.8% | 90.83% | 85.09% | 69.53% | 97.46% |
False Positive Rate (FPR) | 9.62% | 15.57% | 12.82% | 7.73% | 5.95% | 6.82% | 3.23% |
Overall Accuracy (OA) | 82.68% | 73.05% | 67.72% | 91.48% | 89.12% | 80.17% | 97.15% |
Methods | Precision | Recall | FPR | OA |
---|---|---|---|---|
DeepLabv3+ | 96.14% | 96.26% | 4.72% | 95.82% |
RF | 93.69% | 92.07% | 5.91% | 93.11% |
The proposed method | 97.36% | 97.46% | 3.23% | 97.15% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zheng, H.; Han, C.; Wang, H.; Dong, K.; Jing, Y.; Zheng, W. Cloud Detection of SuperView-1 Remote Sensing Images Based on Genetic Reinforcement Learning. Remote Sens. 2020, 12, 3190. https://doi.org/10.3390/rs12193190
Li X, Zheng H, Han C, Wang H, Dong K, Jing Y, Zheng W. Cloud Detection of SuperView-1 Remote Sensing Images Based on Genetic Reinforcement Learning. Remote Sensing. 2020; 12(19):3190. https://doi.org/10.3390/rs12193190
Chicago/Turabian StyleLi, Xiaolong, Hong Zheng, Chuanzhao Han, Haibo Wang, Kaihan Dong, Ying Jing, and Wentao Zheng. 2020. "Cloud Detection of SuperView-1 Remote Sensing Images Based on Genetic Reinforcement Learning" Remote Sensing 12, no. 19: 3190. https://doi.org/10.3390/rs12193190
APA StyleLi, X., Zheng, H., Han, C., Wang, H., Dong, K., Jing, Y., & Zheng, W. (2020). Cloud Detection of SuperView-1 Remote Sensing Images Based on Genetic Reinforcement Learning. Remote Sensing, 12(19), 3190. https://doi.org/10.3390/rs12193190