A Major Ecosystem Shift in Coastal East African Waters During the 1997/98 Super El Niño as Detected Using Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Observations
2.2. Model Configuration and Data
3. Results
3.1. Impact of the 1997/98 El Niño on the Surface Circulation
3.2. Collapse of the North Kenya Banks Upwelling
3.3. Key Mechanisms for the Surface Circulation Changes in 1997–98
3.4. The NKB Upwelling During Other Super El Niño / Strong IOD Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNESCO-IOC. African Oceans and Coasts. In IOC Information Document; Odido, M., Mazzilli, S., Eds.; UNESCO Regional Bureau for Science and Technology: Nairobi, Kenya, 2009; p. 1255. [Google Scholar]
- Taylor, S.F.W.; Roberts, M.J.; Milligan, B.; Ncwadi, R. Measurement and implications of marine food security in the Western Indian Ocean: An impending crisis? Food Secur. 2019, 11, 1395–1415. [Google Scholar] [CrossRef] [Green Version]
- Obura, D.; Burgener, V.; Owen, S.; Gonzales, A. Reviving the Western Indian Ocean Economy: Actions for a Sustainable Future—Summary; WWF International: Gland, Switzerland, 2017; pp. 1–20. [Google Scholar]
- Ochiewo, J. Social and Economic Impacts of Capture Fisheries and Mariculture. In Regional State of the Coast Report: Western Indian Ocean; UNEP, WIOMSA, Eds.; United Nations: Nairobi, Kenya, 2015; pp. 306–316. [Google Scholar]
- Jiddawi, N.S.; Öhman, M.C. Marine fisheries in Tanzania. AMBIO A J. Hum. Environ. 2002, 31, 518–528. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Allison, E.H.; Cinner, J.E. Managing marine resources for food and human security. In Food Security and Sociopolitical Stability; Barett, C.B., Ed.; Oxford University Press: Oxford, UK, 2013; pp. 142–168. [Google Scholar]
- Pinsky, M.L.; Reygondeau, G.; Caddell, R.; Palacios-Abrantes, J.; Spijkers, J.; Cheung, W.W. Preparing ocean governance for species on the move. Science 2018, 360, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masalu, D.C. Coastal and marine resource use conflicts and sustainable development in Tanzania. Ocean Coast. Manag. 2000, 43, 475–494. [Google Scholar] [CrossRef]
- Breuil, C.; Grima, D. Baseline Report Kenya. In SmartFish Programme of the Indian Ocean Commission; Fisheries Management FAO component: Ebene, Mauritius, 2014; pp. 1–40. [Google Scholar]
- Glaser, S.M.; Devlin, C.; Lambert, J.E.; Villegas, C. Fish Wars: The causes and consequences of fisheries conflict in Tanzania. One Earth Future 2018. [Google Scholar] [CrossRef]
- Tunje, J.G.; Tole, M.P.; Hoorweg, J.C.; Shauri, H.S.; Munga, C.N. Conflicts in fisheries resource use along the Vipingo-Mida creek stretch of the Kenyan coast: Causes and implications for fisheries management. Int. J. Fish. Aquat. Stud. 2016, 4, 156–161. [Google Scholar]
- Fréon, P.; Alheit, J.; Barton, E.D.; Kifani, S.; Marchesiello, P. 9 Modelling, forecasting and scenarios in comparable upwelling ecosystems: California, Canary and Humboldt. Large Mar. Ecosyst. 2006, 14, 185–220. [Google Scholar]
- Kassi, J.-B.; Racault, M.-F.; Mobio, B.A.; Platt, T.; Sathyendranath, S.; Raitsos, D.E.; Affian, K. Remotely Sensing the Biophysical Drivers of Sardinella aurita Variability in Ivorian Waters. Remote Sens. 2018, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Jebri, F.; Jacobs, Z.L.; Raitsos, D.E.; Srokosz, M.; Painter, S.C.; Kelly, S.; Roberts, M.J.; Lucy, S.; Taylor, S.F.W.; Palmer, M.; et al. Interannual monsoon wind variability as a key driver of East African small pelagic fisheries. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Roy, C.; Van der Lingen, C.D.; Coetzee, J.C.; Lutjeharms, J.R.E. Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela. Afr. J. Mar. Sci. 2007, 29, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.A.; Baird, M.E.; Ingleton, T.; Doblin, M.A. Long-term changes in temperate Australian coastal waters: Implications for phytoplankton. Mar. Ecol. Prog. Ser. 2009, 394, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Braham, C.B.; Corten, A. Pelagic fish stocks and their response to fisheries and environmental variation in the Canary Current Large Marine Ecosystem. In Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem; Valdés, L., Déniz-González, I., Eds.; IOC-UNESCO: Paris, France, 2015; pp. 197–213. [Google Scholar]
- Pomeroy, R.; Parks, J.; Pollnac, R.; Campson, T.; Genio, E.; Marlessy, C.; Holle, E.; Pido, M.; Nissapa, A.; Boromthanarat, S.; et al. Fish wars: Conflict and collaboration in fisheries management in Southeast Asia. Mar. Policy 2007, 31, 645–656. [Google Scholar] [CrossRef]
- Pacariz, S.V.; Hátún, H.; Jacobsen, J.A.; Johnson, C.; Eliasen, S.; Rey, F. Nutrient-driven poleward expansion of the Northeast Atlantic mackerel (Scomber scombrus) stock: A new hypothesis. Elem. Sci. Anthr. 2016, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Spijkers, J.; Boonstra, W.J. Environmental change and social conflict: The northeast Atlantic mackerel dispute. Reg. Environ. Chang. 2017, 17, 1835–1851. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, Z.L.; Jebri, F.; Raitsos, D.E.; Popova, E.; Srokosz, M.; Painter, S.C.; Nencioli, F.; Roberts, M.; Kamau, J.; Palmer, M.; et al. Shelf-Break Upwelling and Productivity Over the North Kenya Banks: The Importance of Large-Scale Ocean Dynamics. J. Geophys. Res. Oceans 2020, 125, e2019JC015519. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Rienecker, M.M. Mechanisms for the Indian Ocean warming during the 1997–98 El Nino. Geophys. Res. Lett. 1999, 26, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Chavez, F.P.; Strutton, P.G.; Friederich, G.E.; Feely, R.A.; Feldman, G.C.; Foley, D.G.; McPhaden, M.J. Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Niño. Science 1999, 286, 2126–2131. [Google Scholar] [CrossRef]
- Barber, R.T.; Chavez, F.P. Biological consequences of el nino. Science 1983, 222, 1203–1210. [Google Scholar] [CrossRef]
- Barber, R.T.; Chávez, F.P. Ocean variability in relation to living resources during the 1982–83 El Niño. Nature 1986, 319, 279–285. [Google Scholar] [CrossRef]
- Bertrand, A.; Segura, M.; Gutiérrez, M.; Vásquez, L. From small-scale habitat loopholes to decadal cycles: A habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru. Fish Fish. 2004, 5, 296–316. [Google Scholar] [CrossRef]
- Sanchez, G.U.A.D.A.L.U.P.E.; Calienes, R.U.T.H.; Zuta, S. The 1997-98 El Niño and its effects on the coastal marine ecosystem off Peru. Rep. Calif. Coop. Ocean. Fish. Investig. 2000, 41, 62–86. [Google Scholar]
- Ñiquen, M.; Bouchon, M. Impact of El Niño events on pelagic fisheries in Peruvian waters. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 563–574. [Google Scholar] [CrossRef]
- Escribano, R.; Daneri, G.; Farías, L.; Gallardo, V.A.; González, H.E.; Gutiérrez, D.; Lange, C.B.; Morales, C.E.; Pizarro, O.; Ulloa, O.; et al. Biological and chemical consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: A synthesis. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 2389–2411. [Google Scholar] [CrossRef]
- Lehodey, P.; Bertignac, M.; Hampton, J.; Lewis, A.; Picaut, J. El Niño Southern Oscillation and tuna in the western Pacific. Nature 1997, 389, 715–718. [Google Scholar] [CrossRef]
- Sugimoto, T.; Kimura, S.; Tadokoro, K. Impact of El Niño events and climate regime shift on living resources in the western North Pacific. Prog. Oceanogr. 2001, 49, 113–127. [Google Scholar] [CrossRef]
- Lan, K.W.; Evans, K.; Lee, M.A. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Clim. Chang. 2013, 119, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Syamsuddin, M.L.; Saitoh, S.I.; Hirawake, T.; Bachri, S.; Harto, A.B. Effects of El Niño–Southern Oscillation events on catches of bigeye tuna (Thunnus obesus) in the eastern Indian Ocean off Java. Fish. Bull. 2013, 111, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Pillai, G.N.; Manjusha, U. El Nino southern oscillation (ENSO) impact on tuna fisheries in Indian Ocean. SpringerPlus 2014, 3, 591. [Google Scholar] [CrossRef] [Green Version]
- Marsac, F.; Le Blanc, J.L. Oceanographic changes during the 1997–1998 El Niño in the Indian Ocean and their impact on the purse seine fishery. In Proceedings of the 1st Session of the IOTC Working Party on Tropical Tunas, Mahe, Seychelles, 1–4 September 1999; pp. 4–8. [Google Scholar]
- Maina, G.W.; Osuka, K. An EAF baseline report for the small and medium pelagic fisheries of Kenya. In Baseline Reports—Preparation of Management Plans for Selected Fisheries in Africa: Ghana, Kenya, Liberia, Mauritius, Mozambique, Nigeria, Seychelles, Sierra Leone and Tanzania; Koranteng, K.A., Vasconcellos, M.C., Satia, B.P., Eds.; FAO EAF-Nansen Project Report No 23; FAO: Rome, Italy, 2014; pp. 22–89. [Google Scholar]
- NOAA. 2020. Available online: https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ (accessed on 23 September 2020).
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef]
- Meyers, G.; McIntosh, P.; Pigot, L.; Pook, M. The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Clim. 2007, 20, 2872–2880. [Google Scholar] [CrossRef]
- Ateweberhan, M.; McClanahan, T.R.; Graham, N.A.J.; Sheppard, C.R.C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 2011, 30, 739–752. [Google Scholar] [CrossRef]
- Wiggert, J.D.; Vialard, J.; Behrenfield, M.J. Basinwise modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. In Indian Ocean Biogeochemical Processes and Ecological Variability; Wiggert, J.D., Hood, R.R., Naqvi, S.A., Brink, K.H., Smith, S.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 185, pp. 385–405. [Google Scholar]
- Bendeković, J.; Vuletić, D. Piracy influence on the shipowners and insurance companies. In DAAAM International Scientific Book 2013; DAAAM International Viennna: Wien, Austria, 2013; pp. 711–718. [Google Scholar] [CrossRef]
- Pujol, M.I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef] [Green Version]
- Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.I.; Legeais, J.F.; Fournier, F.; Faugere, Y.; Dibarboure, G. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 2019, 15, 1207–1224. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Remote sensing of ocean colour in coastal and other optically complex waters. In Reports of the International Ocean Colour Coordinating Group Number 3; Sathyendrannath, S., Ed.; IOCCG: Dartmouth, NS, Canada, 2000; p. 140. [Google Scholar]
- NASA Goddard Space Flight Center; Ocean Ecology Laboratory; Ocean Biology Processing Group. Coastal Zone Color Scanner Experiment (CZCS) Chlorophyll Concentration Data; NASA Ocean Biology DAAC: Greenbelt, MD, USA, 2014. [Google Scholar] [CrossRef]
- Fulanda, B.; Ohtomi, J.; Mueni, E.; Kimani, E.N. Fishery trends, resource-use and management system in the Ungwana Bay fishery Kenya. Ocean Coast. Manag. 2011, 54, 401–414. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Pradhan, Y.; Brewin, R.J.; Stenchikov, G.; Hoteit, I. Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 2013, 8, e64909. [Google Scholar] [CrossRef] [Green Version]
- Madec, G. ; The NEMO Team. NEMO Ocean Engine. Note du Pole de Modelisation; Institut Pierre-Simon Laplace (IPSL): Guyancourt, France, 2008; Volume 27, pp. 1288–1619. [Google Scholar]
- Marzocchi, A.; Hirschi, J.J.M.; Holliday, N.P.; Cunningham, S.A.; Blaker, A.T.; Coward, A.C. The North Atlantic subpolar circulation in an eddy-resolving global ocean model. J. Mar. Syst. 2015, 142, 126–143. [Google Scholar] [CrossRef] [Green Version]
- National Geophysical Data Center. 2-Minute Gridded Global Relief Data (ETOPO2v2); National Geophysical Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Timmermann, R.; Goosse, H.; Madec, G.; Fichefet, T.; Ethe, C.; Duliere, V. On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Model. 2005, 8, 175–201. [Google Scholar] [CrossRef] [Green Version]
- Levitus, S.; Conkright, M.; Boyer, T.P.; O’Brian, T.; Antonov, J.; Stephens, C.; Johnson, L.S.D.; Gelfeld, R. World Ocean Database 1998; Technical Report NESDIS 18; NOAA Atlas; NESDIS: Silver Spring, MA, USA, 1998. [Google Scholar]
- Brodeau, L.; Barnier, B.; Penduff, T.; Treguier, A.-M.; Gulev, S. An ERA 40 based atmospheric forcing for global ocean circulation models. Ocean Model. 2010, 31, 88–104. [Google Scholar] [CrossRef] [Green Version]
- Dussin, R.; Barnier, B.; Brodeau, L.; Molines, J.-M. The Making of Drakkar Forcing Set DFS5; DRAKKAR/MyOcean Report; LGGE: Grenoble, France, 2016. [Google Scholar]
- Yool, A.; Popova, E.E.; Anderson, T.R. MEDUSA-2.0: An intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies. Geosci. Model. Dev. 2013, 6, 1767–1811. [Google Scholar] [CrossRef] [Green Version]
- Srokosz, M.A.; Robinson, J.; McGrain, H.; Popova, E.E.; Yool, A. Could the Madagascar bloom be fertilized by Madagascan iron? J. Geophys. Res. 2015, 120, 5790–5803. [Google Scholar] [CrossRef] [Green Version]
- Currie, J.C.; Lengaigne, M.; Vialard, J.; Kaplan, D.; Aumont, O.; Naqvi SW, A.; Maury, O. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 2013, 10, 6677–6698. [Google Scholar] [CrossRef] [Green Version]
- Le Traon, P.Y.; Morrow, R. Ocean currents and eddies. In Satellite Altimetry and Earth Sciences: A handbook for Techniues and Applications; Fu, L.L., Cazenave, A., Eds.; Academic Press: San Diego, CA, USA, 2001; Volume 69, pp. 171–210. [Google Scholar]
- Krishnan, R.; Ramesh, K.V.; Samala, B.K.; Meyers, G.; Slingo, J.M.; Fennessy, M.J. Indian Ocean-monsoon coupled interactions and impending monsoon droughts. Geophys. Res. Lett. 2006, 33, L08711. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Robinson, I.S. Sea Surface Height Variability in the Indian Ocean from TOPEX/POSEIDON Altimetry and Model Simulations. Mar. Geod. 2000, 23, 167–195. [Google Scholar]
- Jury, M.R.; Huang, B. The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep Sea Res. I 2004, 51, 2123–2136. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Chambers, D.P.; Tapley, B.D.; Stewart, R.H. Anomalous warming in the Indian Ocean coincident with El Nino. J. Geophys. Res. Ocean. 1999, 104, 3035–3047. [Google Scholar] [CrossRef]
- Johnson, G.C. Deep Signatures of Southern Tropical Indian Ocean Annual Rossby Waves. J. Phys. Oceanogr. 2011, 41, 1958–1964. [Google Scholar] [CrossRef] [Green Version]
- Murtugudde, R.; McCreary, J.P., Jr.; Busalacchi, A.J. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res. Ocean. 2000, 105, 3295–3306. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.P.; Annamalai, H.; Schott, F.A.; McCreary, J.P., Jr. Structure and mechanisms of South Indian Ocean climate variability. J. Clim. 2002, 15, 864–878. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, S.; Gnanaseelan, C.; Chowdary, J.S.; Luo, J.J. Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. Ocean. 2014, 119, 5105–5122. [Google Scholar] [CrossRef]
- Mayorga-Adame, C.; Ted Strub, P.; Batchelder, H.P.; Spitz, Y.H. Characterizing the circulation off the Kenyan-Tanzanian coast using an ocean model. J. Geophys. Res. Ocean. 2016, 121, 1377–1399. [Google Scholar] [CrossRef]
- Bultel, E.; Doherty, B.; Herman, A.; Le Manach, F.; Zeller, D. An update of the reconstructed marine fisheries catches of Tanzania with taxonomic breakdown. In Fisheries Catch Reconstructions in the Western Indian Ocean, 1950–2010; Le Manach, F., Pauly, D., Eds.; Fisheries Centre Research Reports, 23; University of British Columbia: Vancouver, BC, Canada, 2015; pp. 151–161. [Google Scholar]
- Le Manach, F.; Abunge, C.A.; McClanahan, T.R.; Pauly, D. Tentative reconstruction of Kenya’s marine fisheries catch, 1950–2010. In Fisheries Catch Reconstructions in the Western Indian Ocean, 1950–2010; Le Manach, F., Pauly, D., Eds.; Fisheries Centre Research Reports, 23; University of British Columbia: Vancouver, BC, Canada, 2015; pp. 37–51. [Google Scholar]
- Obura, D.O. Kenya. Mar. Pollut. Bull. 2001, 42, 1264–1278. [Google Scholar] [CrossRef]
- Akunga, B.G. Influence of Climate Variability on Coastal Small-Scale Fishing Communities in Kenya. Ph.D. Thesis, The School of Environmental Studies, Kenyatta University, Kahawa, Kenya, 2015. Available online: https://ir-library.ku.ac.ke/bitstream/handle/123456789/13278/Influence%20of%20Climate%20Variability....pdf?sequence=1&isAllowed=y (accessed on 23 September 2020).
- Samoilys, M.A.; Osuka, K.; Maina, G.W.; Obura, D.O. Artisanal fisheries on Kenya’s coral reefs: Decadal trends reveal management needs. Fish. Res. 2017, 186, 177–191. [Google Scholar] [CrossRef]
- Kizenga, H. Primary Productivity and Small Pelagic Fish Catches along the Western Coast of Pemba Island. Master’s Thesis, University of Dar es Salaam, Ubungo, Tanzania, 2020. [Google Scholar]
- Hamidu, U. Assessment of the Marine Artisanal Fisheries in Tanzania Mainland; Ministry of Agriculture, Livestock and Fisheries Development: Dar es Salaam, Tanzania, 2014. [Google Scholar]
- URT. Annual Fisheries Statistics Report; Ministry of Agriculture, Livestock and Fisheries Development: Dar es Salaam, Tanzania, 2015; pp. 1–53. [Google Scholar]
- Anderson, J.; Samoilys, M. The small pelagic fisheries of Tanzania. In Case Studies on Climate Change and African Coastal Fisheries: A Vulnerability Analysis and Recommendations for Adaptation Options; Anderson, J., Andrew, T., Eds.; FAO Fisheries and Aquaculture Circular: Rome, Italy, 2016. [Google Scholar]
- Sekadende, B.; Scott, L.; Anderson, J.; Aswani, S.; Francis, J.; Jacobs, Z.; Jebri, F.; Jiddawi, N.; Kamukuru, A.T.; Kelly, S.; et al. The small pelagic fishery of the Pemba Channel, Tanzania: What we know and what we need to know for management under climate change. Ocean Coast. Manag. 2020, 197, 105322. [Google Scholar] [CrossRef]
- Sherman, K.; Smith, W.; Morse, W.; Berman, M.; Green, J.; Ejsymont, L. Spawning strategies of fishes in relation to circulation, phytoplankton production and pulses in zooplankton off the northeastern United States. Mar. Ecol. Prog. Ser. 1984, 18, 1–19. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Chen, Q.; Li, N.; Shi, K.; Zhang, Y. Regime shifts in shallow lakes observed by remote sensing and the implications for management. Ecol. Indic. 2020, 113, 106285. [Google Scholar] [CrossRef]
- Gokul, E.A.; Raitsos, D.E.; Gittings, J.A.; Alkawri, A.; Hoteit, I. Remotely sensing harmful algal blooms in the Red Sea. PLoS ONE 2019, 14, e0215463. [Google Scholar] [CrossRef]
- van der Elst, R.P.; Groeneveld, J.C.; Baloi, A.P.; Marsac, F.; Katonda, K.I.; Ruwa, R.K.; Lane, W.L. Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008–2012). Ocean Coast. Manag. 2009, 52, 258–267. [Google Scholar] [CrossRef]
- Kenya Coastal Development Project. Beach Management Unit Needs Assessment Report. In Kenya Coastal Development Project Component 1; Kenya Coastal Development Project: Mombasa, Kenya, 2013; pp. 1–97. [Google Scholar]
- McInnes, K.L.; Erwin, T.A.; Bathols, J.M. Global Climate Model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos. Sci. Lett. 2011, 12, 325–333. [Google Scholar] [CrossRef]
- Cai, W.; Sullivan, A.; Cowan, T. Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events. Geophys. Res. Lett. 2009, 36, L23704. [Google Scholar] [CrossRef]
- Zheng, X.T.; Xie, S.P.; Du, Y.; Liu, L.; Huang, G.; Liu, Q. Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Clim. 2013, 26, 6067–6080. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, S.L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett. 2012, 39, L17703. [Google Scholar] [CrossRef] [Green Version]
- Brander, K. Impacts of climate change on fisheries. J. Mar. Syst. 2010, 79, 389–402. [Google Scholar] [CrossRef]
- Hobday, A.J.; Evans, K. Detecting climate impacts with oceanic fish and fisheries data. Clim. Chang. 2013, 119, 49–62. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, Z.L.; Jebri, F.; Srokosz, M.; Raitsos, D.E.; Painter, S.C.; Nencioli, F.; Osuka, K.; Samoilys, M.; Sauer, W.; Roberts, M.; et al. A Major Ecosystem Shift in Coastal East African Waters During the 1997/98 Super El Niño as Detected Using Remote Sensing Data. Remote Sens. 2020, 12, 3127. https://doi.org/10.3390/rs12193127
Jacobs ZL, Jebri F, Srokosz M, Raitsos DE, Painter SC, Nencioli F, Osuka K, Samoilys M, Sauer W, Roberts M, et al. A Major Ecosystem Shift in Coastal East African Waters During the 1997/98 Super El Niño as Detected Using Remote Sensing Data. Remote Sensing. 2020; 12(19):3127. https://doi.org/10.3390/rs12193127
Chicago/Turabian StyleJacobs, Zoe L., Fatma Jebri, Meric Srokosz, Dionysios E. Raitsos, Stuart C. Painter, Francesco Nencioli, Kennedy Osuka, Melita Samoilys, Warwick Sauer, Michael Roberts, and et al. 2020. "A Major Ecosystem Shift in Coastal East African Waters During the 1997/98 Super El Niño as Detected Using Remote Sensing Data" Remote Sensing 12, no. 19: 3127. https://doi.org/10.3390/rs12193127
APA StyleJacobs, Z. L., Jebri, F., Srokosz, M., Raitsos, D. E., Painter, S. C., Nencioli, F., Osuka, K., Samoilys, M., Sauer, W., Roberts, M., Taylor, S. F. W., Scott, L., Kizenga, H., & Popova, E. (2020). A Major Ecosystem Shift in Coastal East African Waters During the 1997/98 Super El Niño as Detected Using Remote Sensing Data. Remote Sensing, 12(19), 3127. https://doi.org/10.3390/rs12193127