Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Previously Detected Archaeological Features
2.4. Relief Visualization Techniques
2.4.1. Object-Based Image Analysis (OBIA)
2.4.2. Sky-View Factor (SVF)
2.4.3. Topographic Position Index (TPI)
2.4.4. Local Relief Model (LRM) and Simple Local Relief Model (SLRM)
3. Results
3.1. Topographic Position Index (TPI)
3.2. Simple Local Relief Model (SLRM)
3.3. SLRM and TPI Comparisons to Known Archaeological Features
3.3.1. Plazuela Size and Vegetation Cover
3.3.2. Number of Structures and Structure Size
3.4. Archaeological Prospection Compared to Land Use
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Canuto, M.A.; Estrada-Belli, F.; Garrison, T.G.; Houston, S.D.; Acuña, M.J.; Kováč, M.; Marken, D.; Nondédéo, P.; Auld-Thomas, L.; Castanet, C.; et al. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science 2018, 361, eaau0137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, A.F.; Chase, D.Z.; Weishampel, J.F.; Drake, J.B.; Shrestha, R.L.; Slatton, K.C.; Awe, J.J.; Carter, W.E. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeol. Sci. 2011, 38, 387–398. [Google Scholar] [CrossRef]
- Davis, D.S. Object-based image analysis: A review of developments and future directions of automated feature detection in landscape archaeology. Archaeol. Prospect. 2018, 26, 155–163. [Google Scholar] [CrossRef]
- Inomata, T.; Triadan, D.; López, V.A.V.; Fernandez-Diaz, J.C.; Omori, T.; Bauer, M.B.M.; Hernández, M.G.; Beach, T.; Cagnato, C.; Aoyama, K.; et al. Monumental architecture at Aguada Fénix and the rise of Maya civilization. Nature 2020, 582, 1–4. [Google Scholar] [CrossRef]
- LaRocque, A.; Leblon, B.; Ek, J. Detection of potential large Maya settlements in the northern Petén area (State of Campeche, Mexico) using optical and radar remote sensing. J. Archaeol. Sci. Rep. 2019, 23, 80–97. [Google Scholar] [CrossRef]
- Hutson, S.R. Adapting LiDAR data for regional variation in the tropics: A case study from the Northern Maya Lowlands. J. Archaeol. Sci. Rep. 2015, 4, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Hutson, S.R.; Kidder, B.; Lamb, C.; Vallejo-Cáliz, D.; Welch, J. Small buildings and small budgets: Making Lidar work in northern Yucatán, Mexico. Adv. Archaeol. Pract. 2016, 4, 268–283. [Google Scholar] [CrossRef]
- Inomata, T.; Pinzón, F.; Ranchos, J.R.; Haraguchi, T.; Nasu, H.; Fernandez-Diaz, J.C.; Aoyama, K.; Yonenobu, H. Archaeological application of airborne LiDAR with object-based vegetation classification and visualization techniques at the lowland Maya site of Ceibal, Guatemala. Remote Sens. 2017, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Prufer, K.M.; Thompson, A.E.; Kennett, D.J. Evaluating airborne LiDAR for detecting settlements and modified landscapes in disturbed tropical environments at Uxbenká, Belize. J. Archaeol. Sci. 2015, 57, 1–13. [Google Scholar] [CrossRef]
- Reese-Taylor, K.; Hernández, A.A.; Esquivel, F.A.F.; Monteleone, K.; Uriarte, A.; Carr, C.; Acuña, H.G.; Fernandez-Diaz, J.C.; Peuramaki-Brown, M.; Dunning, N. Boots on the ground at Yaxnohcah: Ground-truthing LiDAR in a complex tropical landscape. Adv. Archaeol. Pract. 2016, 4, 314–338. [Google Scholar] [CrossRef]
- Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proc. Natl. Acad. Sci. USA 2012, 109, 12916–12921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.H.; Fletcher, R.J.; Pottier, C.; Chevance, J.B.; Soutif, D.; Tan, B.S.; Im, S.; Ea, D.; Tin, T.; Kim, S.; et al. Uncovering archaeological landscapes at Angkor using LiDAR. Proc. Natl. Acad. Sci. USA 2013, 110, 12595–12600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, C.T.; Cohen, A.S.; Fernández-Diaz, J.C.; Leisz, S.J. The application of airborne mapping LiDAR for the documentation of ancient cities and regions in tropical regions. Quat. Int. 2017, 448, 129–138. [Google Scholar] [CrossRef]
- Harmon, J.M.; Leone, M.P.; Prince, S.D.; Snyder, M. LiDAR for archaeological landscape analysis: A case study of two eighteenth-century Maryland plantation sites. Am. Antiq. 2006, 71, 649–670. [Google Scholar] [CrossRef]
- Iriate, J.; Robinson, M.; Jonas de Souza, J.; Damasceno, A.; da Silva, F.; Nakahara, F.; Ranzi, A.; Aragao, A. Geometry by design: Contribution of lidar to the understanding of settlement patterns of the mound villages in SW Amazonia. J. Comput. Archaeol. 2020, 3, 151–169. [Google Scholar]
- Štular, B.; Kokalj, Ž.; Oštir, K.; Nuninger, L. Visualization of LiDAR-derived relief models for detection of archaeological features. J. Archaeol. Sci. 2012, 39, 3354–3360. [Google Scholar] [CrossRef]
- Horn, S.W., III; Ford, A. Beyond the magic wand: Methodological developments and results from integrated Lidar survey at the ancient Maya Center El Pilar. STAR Sci. Technol. Archaeol. Res. 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.E.; Prufer, K.M. Airborne LiDAR for detecting ancient settlements and landscape modifications at Uxbenká, Belize. Res. Rep. Belizean Archaeol. 2015, 12, 251–259. [Google Scholar]
- Quintus, S.; Day, S.S.; Smith, N.J. The efficacy and analytical importance of manual feature extraction using lidar datasets. Adv. Archaeol. Pract. 2017, 5, 351–364. [Google Scholar] [CrossRef]
- Cornett, R.L.; Ernenwein, E.G. Object-based image analysis of ground-penetrating radar data for archaic hearths. Remote Sens. 2020, 12, 2539. [Google Scholar] [CrossRef]
- Davis, D.S.; Lipo, C.P.; Sanger, M.C. A comparison of automated object extraction methods for mound and shell-ring identification in coastal South Carolina. J. Archaeol. Sci. Rep. 2019, 23, 166–177. [Google Scholar] [CrossRef]
- Howey, M.C.; Sullivan, F.B.; Tallant, J.; Kopple, R.V.; Palace, M.W. Detecting precontact anthropogenic microtopographic features in a forested landscape with lidar: A case study from the upper great lakes region, AD 1000–1600. PLoS ONE 2016, 11, e0162062. [Google Scholar] [CrossRef] [PubMed]
- Risbøl, O.; Bollandsås, O.M.; Nesbakken, A.; Ørka, H.O.; Næsset, E.; Gobakken, T. Interpreting cultural remains in airborne laser scanning generated digital terrain models: Effects of size and shape on detection success rates. J. Archaeol. Sci. 2013, 40, 4688–4700. [Google Scholar] [CrossRef]
- Barbour, T.E.; Sassaman, K.E.; Zambrano, A.M.A.; Broadbent, E.N.; Wilkinson, B.; Kanaski, R. Rare pre-Columbian settlement on the Florida Gulf Coast revealed through high-resolution drone LiDAR. Proc. Natl. Acad. Sci. USA 2019, 116, 23493–23498. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.S.; Sanger, M.C.; Lipo, C.P. Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeast. Archaeol. 2018, 37, 1–15. [Google Scholar] [CrossRef]
- Henry, E.R.; Shields, C.R.; Kidder, T.R. Mapping the adena-hopewell landscape in the Middle Ohio Valley, USA: Multi-scalar approaches to LiDAR-derived imagery from Central Kentucky. J. Archaeol. Method Th. 2019, 26, 1513–1555. [Google Scholar] [CrossRef]
- Henry, E.R.; Wright, A.P.; Sherwood, S.C.; Carmody, S.B.; Barrier, C.R.; Van de Ven, C. Beyond Never-Never Land: Integrating LiDAR and geophysical surveys at the Johnston Site, Pinson Mounds State Archaeological Park, Tennessee, USA. Remote Sens. 2020, 12, 2364. [Google Scholar] [CrossRef]
- Thompson, V.D.; Marquardt, W.H.; Cherkinsky, A.; Roberts Thompson, A.D.; Walker, K.J.; Newsom, L.A.; Savarese, M. From shell midden to midden-mound: The geoarchaeology of Mound Key, an anthropogenic island in southwest Florida, USA. PLoS ONE 2016, 11, e0154611. [Google Scholar] [CrossRef]
- Horňáka, M.; Zachara, J. Some examples of good practice in LiDAR prospection in preventive archaeology. Interdiscip. Archaeol.Nat. Sci. Archaeol. 2017, VIII, 113–124. [Google Scholar]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-view factor as a relief visualization technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Hanus, K.; Evans, D. Imaging the waters of angkor: A method for semi-automated pond extraction from LiDAR data. Archaeol. Prospect. 2016, 23, 87–94. [Google Scholar] [CrossRef]
- Friedman, R.A.; Sofaer, A.; Weiner, R.S. Remote sensing of chaco roads revisited: Lidar documentation of the Great North Road, Pueblo Alto Landscape, and Aztec Airport Mesa Road. Adv. Archaeol. Pract. 2017, 5, 365–381. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.S.Z.; Chase, D.Z.; Chase, A.F. LiDAR for archaeological research and the study of historical landscapes. In Sensing the Past: From Artifact to Historical Site; Masini, N., Soldovieri, F., Eds.; Springer: New York, NY, USA, 2017; pp. 89–100. [Google Scholar]
- Ford, A. Unexpected discovery with LiDAR: Uncovering the citadel at El Pilar in the context of the Maya Forest GIS. Res. Rep. Belizean Archaeol. 2016, 13, 87–98. [Google Scholar]
- Magnoni, A.; Stanton, T.W.; Barth, N.; Fernandez-Diaz, J.C.; León, J.F.O.; Ruíz, F.P.; Wheeler, J.A. Detection thresholds of archaeological features in airborne LiDAR data from Central Yucatán. Adv. Archaeol. Pract. 2016, 4, 232–248. [Google Scholar] [CrossRef]
- Masini, N.; Gizzi, F.; Biscione, M.; Fundone, V.; Sedile, M.; Sileo, M.; Pecci, A.; Lavovra, B.; Lasaponara, R. Medieval archaeology under the canopy with LiDAR. The (Re) discovery of a medieval fortified settlement in Southern Italy. Remote Sens. 2018, 10, 1598. [Google Scholar] [CrossRef] [Green Version]
- Moyes, H.; Montgomery, S. Mapping ritual landscapes using Lidar. Adv. Archaeol. Pract. 2016, 4, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Vizireanu, I.; Mateescu, R. The potential of airborne LiDAR for detection of new archaeological site in Romania. In Diversity in Coastal Marine Sciences; Finkl, C.W., Makowski, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 617–630. [Google Scholar]
- Kokalj, Z.; Ostir, K.; Zaksek, K. Sky-View Factor Visualization for Detection of Archaeological Remains. EGU General Assembly Conference Abstracts. 2013, Volume 15, pp. EGU2013–EGU12781. Available online: https://ui.adsabs.harvard.edu/abs/2013EGUGA..1512781K/abstract (accessed on 1 September 2020).
- Chase, A.S.Z.; Weishampel, J. Using LiDAR and GIS to investigate water and soil management in the agricultural terracing at Caracol, Belize. Adv. Archaeol. Practice 2016, 4, 357–370. [Google Scholar] [CrossRef]
- Ebert, C.E.; Hoggarth, J.A.; Awe, J.J. Integrating quantitative LiDAR analysis and settlement survey in the Belize River Valley. Adv. Archaeol. Pract. 2016, 4, 284–300. [Google Scholar] [CrossRef]
- Yaeger, J.; Brown, M.K.; Cap, B. Locating and dating sites using Lidar survey in a mosaic landscape in Western Belize. Adv. Archaeol. Pract. 2016, 4, 339–356. [Google Scholar] [CrossRef]
- Inomata, T.; Triadan, D.; Pinzón, F.; Burham, M.; Ranchos, J.R.; Aoyama, K.; Haraguchi, T. Archaeological application of airborne LiDAR to examine social changes in the Ceibal region of the Maya lowlands. PLoS ONE 2018, 13, e0191619. [Google Scholar] [CrossRef]
- Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.; Knudby, A. Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69, 64–74. [Google Scholar] [CrossRef]
- Cohen, A.; Klassen, S.; Evans, D. Ethic in archaeological Lidar. J. Comput. Archaeol. 2020, 3, 76–91. [Google Scholar] [CrossRef]
- Garrison, T.G. Settlement patterns. In The Maya World; Hutson, S.R., Ardren, T., Eds.; Routledge: New York, NY, USA, 2020; pp. 250–268. [Google Scholar]
- Garrison, T.G.; Chapman, B.; Houston, S.; Román, E.; Garrido López, J.L. Discovering ancient Maya settlements using airborne radar elevation data. J. Archaeol. Sci. 2011, 38, 1655–1662. [Google Scholar] [CrossRef]
- Thompson, A.E. Comparative Processes of Sociopolitical Development in the Foothills of the Southern Maya Mountains. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 2019. [Google Scholar]
- Prufer, K.M.; Thompson, A.E.; Meredith, C.R.; Culleton, B.J.; Jordan, J.M.; Ebert, C.E.; Winterhalder, B.; Kennett, D.J. The Classic Period Maya transition from an ideal free to an ideal despotic settlement system at the middle-level polity of Uxbenká. J. Anth. Archaeol. 2017, 45, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.E.; Meredith, C.R.; Prufer, K.M. Comparing geostatistical analyses for the identification of neighborhoods, districts, and social communities in archaeological contexts: A case study from two Ancient Maya Centers in Southern Belize. J. Archaeol. Sci. 2018, 97, 1–13. [Google Scholar] [CrossRef]
- Thompson, A.E.; Prufer, K.M. Archaeological research in Southern Belize at Uxbenká and Ix Kuku’il. Res. Rep. Belizean Archaeol. 2019, 16, 311–322. [Google Scholar]
- Prufer, K.M.; Thompson, A.E. Lidar-based analyses of anthropogenic landscape alterations as a component of the built environment. Adv. Archaeol. Pract. 2016, 4, 393–409. [Google Scholar] [CrossRef]
- Braswell, G.; Prufer, K.M. Political organization and interaction in southern Belize. Res. Rep. Belizean Archaeol. 2009, 6, 43–54. [Google Scholar]
- Leventhal, R.M. Southern Belize: An ancient Maya region. In Vision and Revision in Maya Studies; Clancy, F.S., Harrison, P.D., Eds.; University of New Mexico Press: Albuquerque, NM, USA, 1990; pp. 125–141. [Google Scholar]
- Leventhal, R.M. The development of a regional tradition in southern Belize. In New Theories on the Ancient Maya; Danien, E.C., Sharer, R.J., Eds.; The University Museum, University of Pennsylvania: Philadelphia, PA, USA, 1992; pp. 145–154. [Google Scholar]
- Keller, G.; Stinnesbeck, W.; Adatte, T.; Holland, B.; Stüben, D.; Harting, M.; de Leon, C.; de la Cruz, J. Spherule deposits in Cretaceous Tertiary boundary sediments in Belize and Guatemala. J. Geolog. Soc. Lond. 2003, 160, 783–795. [Google Scholar] [CrossRef]
- Dunham, P.S. Coming Apart at the Seams: The Classic Development and Demise of the Maya Civilization (A Segmentary View from Xnaheb, Belize). Ph.D. Thesis, State University of New York at Albany, Albany, NY, USA, 1990. [Google Scholar]
- Weishampel, J.F.; Hightower, J.N.; Chase, A.F.; Chase, D.Z. Use of airborne LiDAR to delineate canopy degradation and encroachment along the Guatemala-Belize border. Trop. Conserv. Sci. 2012, 5, 12–24. [Google Scholar] [CrossRef]
- Brewer, J.L.; Carr, C.; Dunning, N.P.; Walker, D.S.; Hernández, A.A.; Peuramaki-Brown, M.; Reese-Taylor, K. Employing airborne lidar and archaeological testing to determine the role of small depressions in water management at the ancient Maya site of Yaxnohcah, Campeche, Mexico. J. Archaeol. Sci. Rep. 2017, 13, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.F.; Chase, D.Z.; Awe, J.J.; Weishampel, J.F.; Iannone, G.; Moyes, H.; Yaeger, J.; Brown, M.K.; Shrestha, R.L.; Carter, W.E. Ancient Maya regional settlement and inter-site analysis: The 2013 west-central Belize LiDAR Survey. Remote Sens. 2014, 6, 8671–8695. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Diaz, J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.; Sartori, M. Capability assessment and performance metrics for the Titan multispectral mapping lidar. Remote Sens. 2016, 8, 936. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.F.; Chase, D.Z. Detection of Maya ruins by LiDAR: Applications, case study, and issues. In Sensing the Past: From Artifact to Historical Site; Masini, N., Soldovieri, F., Eds.; Springer: New York, NY, USA, 2017; pp. 455–468. [Google Scholar]
- Bollandsås, O.M.; Risbøl, O.; Ene, L.T.; Nesbakken, A.; Gobakken, T.; Næsset, E. Using airborne small-footprint laser scanner data for detection of cultural remains in forests: An experimental study of the effects of pulse density and DTM smoothing. J. Archaeol. Sci. 2012, 39, 2733–2743. [Google Scholar] [CrossRef]
- Mayoral, A.; Toumazet, J.P.; Simon, F.X.; Vautier, F.; Peiry, J.L. The highest gradient model: A new method for analytical assessment of the efficiency of LiDAR-derived visualization techniques for landform detection and mapping. Remote Sens. 2017, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Hammond, N. Lubaantun: A Classic Maya Realm; Peabody Museum Monographs, Number 2; Harvard University: Cambridge, MA, USA, 1975. [Google Scholar]
- Kucharczyk, M.; Hay, G.J.; Ghaffarian, S.; Hugenholtz, C.H. Geographic object-based image analysis: A primer and future directions. Remote Sens. 2020, 12, 2012. [Google Scholar] [CrossRef]
- Meyer, M.F.; Pfeffer, I.; Jürgens, C. Automated detection of field monuments in digital terrain models of Westphalia using OBIA. Geosciences 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Kokalj, Ž.; Zakšek, K.; Oštir, K. Application of sky-view factor for the visualisation of historic landscape features in LiDAR-derived relief models. Antiquity 2011, 85, 263–273. [Google Scholar] [CrossRef]
- Souza, L.C.L.; Rodrigues, D.S.; Mendes, J.F. Sky view factors estimation using a 3D-GIS extension. In Proceedings of the Eighth International IBPSA Conference, Eindhoven, The Netherlands, 11–14 August 2003. [Google Scholar]
- Relief Visualization Toolbox (RVT) Version 1.3. Available online: https://iaps.zrc-sazu.si/en/rvt#v (accessed on 20 November 2018).
- Kokalj, Ž.; Zaksek, K.; Oštir, K.; Pehani, P.; Čotar, K. Relief Visualization Toolbox, Ver. 1.3 Manual; Research Centre of the Slovenian Academy of Sciences and Arts: Ljubljana, Slovenia, 2016. [Google Scholar]
- Jenness Enterprises. 2006. Available online: http://www.jennessent.com/arcview/tpi.htm (accessed on 1 September 2020).
- Cooley, S.W. Watershed Delineation Lesson. Available online: http://gis4geomorphology.com/roughness-topographic-position/ (accessed on 16 November 2018).
- Dilts, T.E. Topography Tools for ArcGIS 10.1. University of Nevada Reno, 2018. Available online: http://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9 (accessed on 1 September 2020).
- Novák, D. Local Relief Model (LRM) Toolbox for ArcGIS; Institute of Archaeology, Czech Academy of Science: Prague, Czech Republic, 2014. [Google Scholar]
- Culleton, B.J.; Prufer, K.M.; Kennett, D.J. A Bayesian AMS 14C chronology of the Classic Maya center of Uxbenká, Belize. J. Archaeol. Sci. 2012, 39, 1572–1586. [Google Scholar] [CrossRef]
- Prufer, K.M.; Moyes, H.; Culleton, B.J.; Kindon, A.; Kennett, D.J. Formation of a complex polity on the eastern periphery of the Maya Lowlands. Lat. Am. Antiq. 2011, 22, 199–223. [Google Scholar] [CrossRef]
- Crow, P.; Benham, S.; Devereux, B.J.; Amable, G.S. Woodland vegetation and its implications for archaeological survey using LiDAR. Forestry 2007, 80, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Fedick, S.L. (Ed.) The Managed Mosaic: Ancient Maya Agriculture and Resource Use; University of Utah Press: Salt Lake City, UT, USA, 1996. [Google Scholar]
- Wainwright, J.; Jiang, S.; Mercer, K.; Liu, D. The political ecology of a highway through Belize’s forested borderlands. Environ. Plan. A Econ. Space 2015, 47, 833–849. [Google Scholar] [CrossRef] [Green Version]
- Garrison, T.G.; Houston, S.D.; Golden, C.; Inomata, T.; Nelson, Z.; Munson, J. Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology. J. Archaeol. Sci. 2008, 35, 2770–2777. [Google Scholar] [CrossRef]
- Garrison, T.G. Remote sensing ancient Maya rural populations using QuickBird satellite imagery. Int. J. Remote Sens. 2010, 31, 213–231. [Google Scholar] [CrossRef]
- Chase, A.F.; Reese-Taylor, K.; Fernandez-Diaz, J.C.; Chase, D.Z. Progression and issues in the Mesoamerican geospatial revolution: An introduction. Adv. Archaeol. Practice 2016, 4, 219–231. [Google Scholar] [CrossRef]
- Garrison, T.G.; Houston, S.; Firpi, O.A. Recentering the rural: Lidar and articulated landscapes among the Maya. J. Anth. Archaeol. 2019, 53, 133–146. [Google Scholar] [CrossRef]
- Prufer, K.M.; Thompson, A.E. Settlements as neighborhoods and districts at Uxbenká: The social landscape of Maya Community. Res. Rep. Belizean Archaeol. 2014, 11, 281–289. [Google Scholar]
- LeCount, L.J.; Walker, C.P.; Blitz, J.H.; Nelson, T.C. Land tenure systems at the ancient Maya site of Actuncan, Belize. Lat. Am. Antiq. 2019, 30, 245–265. [Google Scholar] [CrossRef]
- Jamison, T. Social organization and architectural context: A comparison of Nim Li Punit and Xnaheb. In The Past and Present Maya; Weeks, J., Ed.; Labyrinthos: Lancaster, CA, USA, 2001; pp. 73–87. [Google Scholar]
- Baines, K. Embodying Ecological Heritage in a Maya Community: Health, Happiness, and Identity; Lexington Books: London, UK, 2015. [Google Scholar]
- Stanley, E. Monilia (Moniliophtora roreri) and the post-development of Belizean Cacao. Cult. Agric. Food Environ. 2016, 38, 28–37. [Google Scholar] [CrossRef]
- Somrak, M.; Džeroski, S.; Kokalj, Ž. Learning to classify structures in ALS-derived visualizations of ancient Maya Settlements with CNN. Remote Sens. 2020, 12, 2215. [Google Scholar] [CrossRef]
- Davis, D.S. Geographic disparity in machine intelligence approaches for archaeological remote sensing research. Remote Sens. 2020, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.S.; Andriankaja, V.; Carnat, T.L.; Chrisostome, Z.M.; Colombe, C.; Fenomanana, F.; Hubertine, L.; Justome, R.; Lahiniriko, F.; Léonce, H.; et al. Satellite-based remote sensing rapidly reveals extensive record of Holocene coastal settlement on Madagascar. J. Archaeol. Sci. 2020, 115, 105097. [Google Scholar] [CrossRef]
- Kirk, S.D.; Thompson, A.E.; Lippitt, C.D. Predictive modeling for site detection using remotely sensed phenological data. Adv. Archaeol. Pract 2016, 4, 87–101. [Google Scholar] [CrossRef]
- Lambers, K.; Verschoof-van der Vaart, W.B.; Bourgeois, Q.P. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote Sens. 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
All TPI | All SLRM | Total all SLRM and TPI | |
---|---|---|---|
Total plazuelas identified | 503 | 580 | 702 |
Number of confirmed positives (Previously surveyed plazuelas identified) | 111 | 117 | 129 |
Number of the 315 surveyed plazuelas not identified | 204 | 198 | 186 |
Percent of 315 surveyed plazuelas identified | 35.20% | 37.14% | 40.95% |
Total newly identified plazuelas | 385 | 457 | 563 |
Number of false positives (Previously documented hilltops with no archaeological features) | 7 | 6 | 10 |
Percent of 68 previously documented hilltops with no archaeological features | 10.30% | 8.80% | 14.70% |
SLRM Only | SLRM and TPI | TPI Only | All SLRM | All TPI | Total of all SLRM and TPI | |
---|---|---|---|---|---|---|
Plazuelas identified | 199 | 381 | 122 | 580 | 503 | 702 |
Confirmed positives | 18 | 99 | 12 | 117 | 111 | 129 |
Newly identified plazuelas | 178 | 279 | 106 | 457 | 385 | 563 |
False positives | 3 | 3 | 4 | 6 | 7 | 10 |
2011 milpas | 14 | 39 | 1 | 53 | 40 | 54 |
2010 milpas | 8 | 12 | 0 | 20 | 12 | 20 |
2009 milpas | 6 | 9 | 2 | 15 | 11 | 17 |
2008 milpas | 8 | 6 | 2 | 14 | 8 | 16 |
Average Area (m2) | Sample Size * | Average Number of Surveyed Structures | Sample Size * | |
---|---|---|---|---|
All previously surveyed plazuelas | 976.3 | 315 | 2.8 | 305 |
SLRM only | 943.3 | 17 | 3.4 | 17 |
SLRM and TPI | 1613.6 | 98 | 3.5 | 97 |
TPI only | 855.6 | 12 | 3.1 | 12 |
All SLRM | 1514.5 | 115 | 3.5 | 114 |
All TPI | 1530.9 | 110 | 3.5 | 109 |
Total all SLRM and TPI plazuelas | 1452.3 | 127 | 3.5 | 125 |
All previously surveyed plazuelas (except plazuelas > 5000 sq. m) | 804.1 | 307 | - | - |
SLRM and TPI (except plazuelas > 5000 sq. m) | 1127.4 | 91 | - | - |
All SLRM (except plazuelas > 5000 sq. m) | 1098.4 | 108 | - | - |
All TPI (except plazuelas > 5000 sq. m) | 1095.7 | 103 | - | - |
Total all SLRM and TPI plazuelas except 7 largest (> 5000 sq. m) | 1074.1 | 120 | - | - |
Number of Structures | Surveyed Plazuelas Containing the Number Structures in the First Column | SLRM and TPI Plazuelas Containing the Number Structures in the First Column | % Identified |
---|---|---|---|
unknown | 10 | 1 | 10% |
1 | 100 | 24 | 24% |
2 | 60 | 20 | 33% |
3 | 53 | 23 | 43% |
4 | 39 | 24 | 62% |
5 | 26 | 14 | 54% |
6 | 13 | 11 | 85% |
7 | 7 | 5 | 71% |
8 | 4 | 2 | 50% |
9 | 1 | 1 | 100% |
10 | 1 | 0 | 0% |
12 | 1 | 1 | 100% |
Total plazuelas (not including unknowns) | 305 | 125 | 41% |
milpa Year | Total in the Mapped milpa Boundary | ||||
---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | ||
Total plazuelas through SLRM and TPI | 16 | 17 | 20 | 54 | 229 * |
Possible plazuelas through SLRM and TPI | 13 | 12 | 18 | 41 | 165 |
Confirmed plazuelas through SLRM and TPI | 3 | 5 | 2 | 13 | 63 |
Confirmed plazuelas total | 13 | 18 | 8 | 20 | 171 |
Percent of confirmed plazuelas identified with SLRM and TPI | 23.1 | 27.8 | 25.0 | 65.0 | 36.8 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, A.E. Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations. Remote Sens. 2020, 12, 2838. https://doi.org/10.3390/rs12172838
Thompson AE. Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations. Remote Sensing. 2020; 12(17):2838. https://doi.org/10.3390/rs12172838
Chicago/Turabian StyleThompson, Amy E. 2020. "Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations" Remote Sensing 12, no. 17: 2838. https://doi.org/10.3390/rs12172838
APA StyleThompson, A. E. (2020). Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations. Remote Sensing, 12(17), 2838. https://doi.org/10.3390/rs12172838