Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Climate
2.3. Experimental Setup and Treatments
2.4. Measurements with RapidScan CS-45
2.5. Statistical Analysis
3. Results
3.1. NDVI throughout Wheat-Growing Season
3.1.1. Period Comprehended from GS21 to GS30
3.1.2. Period Comprehended from GS30 to GS32
3.1.3. Period Comprehended from GS32 to GS37
3.1.4. Period Comprehended from GS37 to GS65
Growing Season | Initial Fertilization | Treatment | Yield | sd | NDVI Readings |
---|---|---|---|---|---|
2015 | Conventional | 40N + 0N | 4942 C | 555 | |
40N + 40N | 7078 B | 912 | |||
40N + 80N | 8215 A | 548 | |||
40N + 120N | 8230 A | 144 | |||
40 N+ 160N | 8688 A | 812 | |||
Dairy slurry | DS + 0N | 4378 C | 145 | | |
DS + 40N | 6271 B | 56 | |||
DS + 80N | 7762 A | 316 | |||
DS + 120N | 8275 A | 345 | |||
DS + 160N | 8181 A | 961 | |||
Sheep manure | SM + 0N | 4807 C | 588 | | |
SM + 40N | 6525 B | 261 | |||
SM + 80N | 7966 A | 244 | |||
SM + 120N | 8154 A | 368 | |||
SM + 160N | 8525 A | 452 | |||
Control | 0N | 4119 | 277 | ||
Overfert. | 280N | nd | nd | ||
|
Growing Season | Initial Fertilization | Treatment | Yield | sd | NDVI Readings |
---|---|---|---|---|---|
2016 | Conventional | 40N + 0N | 6083 C | 755 | |
40N + 40N | 8507 B | 203 | |||
40N + 80N | 9682 A | 357 | |||
40N + 120N | 9933 A | 630 | |||
40N + 160N | 10,554 A | 401 | |||
Dairy slurry | DS + 0N | 5969 C | 525 | | |
DS + 40N | 8431 B | 480 | |||
DS + 80N | 10,136 A | 560 | |||
DS + 120N | 10,221 A | 426 | |||
DS + 160N | 10,262 A | 373 | |||
Sheep manure | SM + 0N | 6659 D | 801 | | |
SM + 40N | 8803 C | 424 | |||
SM + 80N | 9518 BC | 336 | |||
SM + 120N | 10,446 AB | 681 | |||
SM + 160N | 10,772 A | 726 | |||
Control | 0N | 5243 | 182 | ||
Overfert. | 280N | 10,375 | 911 | ||
|
Growing Season | Initial Fertilization | Treatment | Yield | sd | NDVI Readings |
---|---|---|---|---|---|
2017 | Conventional | 40N + 0N | 5239 C a | 192 | |
40N + 40N | 5905 B a | 488 | |||
40N + 80N | 6492 AB a | 450 | |||
40N + 120N | 6941 A a | 202 | |||
40N + 160N | 7095 A a | 407 | |||
Dairy slurry | DS + 0N | 3879 C b | 168 | | |
DS + 40N | 5081 B b | 248 | |||
DS + 80N | 5965 A b | 322 | |||
DS + 120N | 6056 A b | 589 | |||
DS + 160N | 6137 A b | 104 | |||
Sheep manure | SM + 0N | 3472 D b | 196 | | |
SM + 40N | 4704 C b | 445 | |||
SM + 80N | 5287 B b | 413 | |||
SM + 120N | 5537 AB b | 290 | |||
SM + 160N | 5923 A b | 314 | |||
Control | 0N | 3348 | 320 | ||
Overfert. | 280N | 8020 | 268 | ||
|
3.2. NDVI Values for Maximum Grain Yield
4. Discussion
4.1. NDVI Values at Key Growing Stages
4.2. NDVI Dynamics and Wheat Grain Yield
4.3. Proximal Sensing for Correcting Wheat Yield
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Treatment | 2015 | 2016 | 2017 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | NDVI Readings | Yield | NDVI Readings | Yield | NDVI Readings | ||||||||||
GS30 | GS32 | GS37 | GS65 | GS30 | GS32 | GS37 | GS65 | GS30 | GS32 | GS37 | GS65 | ||||
40N + 0N | * | *** | ** | * | * | * | *** | ** | * | * | *** | *** | ** | *** | ** |
40N + 40N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
40N + 80N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
40N + 120N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
40N + 160N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
DS + 0N | ns | *** | *** | ns | ns | ns | ** | ns | ns | ns | * | ns | ns | ns | ns |
DS + 40N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | ns | ns | *** |
DS + 80N | w*** | -- | *** | *** | *** | *** | -- | *** | *** | *** | w*** | -- | ns | ns | *** |
DS + 120N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | ns | ns | *** |
DS + 160N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | ns | ns | *** |
SM + 0N | ns | ns | ns | ns | ns | ns | ** | ns | ns | ** | ns | ns | ns | ns | ns |
SM + 40N | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | ns | ns | *** |
SM + 80N | ** | -- | *** | *** | *** | *** | -- | ** | ** | *** | w*** | -- | ns | ns | *** |
SM + 120N | w*** | -- | *** | *** | *** | *** | -- | ** | *** | *** | *** | -- | ns | ns | *** |
SM + 160N | *** | -- | *** | *** | *** | *** | -- | ** | *** | *** | *** | -- | ns | ns | *** |
Treatment | 2015 | 2016 | 2017 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | NDVI Readings | Yield | NDVI Readings | Yield | NDVI Readings | ||||||||||
GS30 | GS32 | GS37 | GS65 | GS30 | GS32 | GS37 | GS65 | GS30 | GS32 | GS37 | GS65 | ||||
40N + 0N | nd | *** | *** | *** | *** | *** | ** | *** | * | * | *** | *** | ** | *** | ** |
40N + 40N | nd | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
40N + 80N | nd | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
40N + 120N | nd | -- | *** | ns | *** | *** | -- | *** | *** | ns | *** | -- | *** | *** | *** |
40N + 160N | nd | -- | *** | ns | ns | ns | -- | *** | ns | ns | *** | -- | *** | *** | *** |
DS + 0N | nd | *** | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
DS + 40N | nd | -- | ns | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
DS + 80N | nd | -- | ns | ns | ns | ns | -- | *** | *** | *** | *** | -- | *** | *** | *** |
DS + 120N | nd | -- | ns | ns | ns | ns | -- | *** | *** | *** | *** | -- | *** | *** | *** |
DS + 160N | nd | -- | *** | ns | ns | ns | -- | *** | ns | ns | *** | -- | *** | *** | ** |
SM + 0N | nd | *** | ** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
SM + 40N | nd | -- | *** | *** | *** | *** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
SM + 80N | nd | -- | *** | *** | ns | ** | -- | *** | *** | *** | *** | -- | *** | *** | *** |
SM + 120N | nd | -- | ** | ns | ns | ns | -- | *** | *** | *** | *** | -- | *** | *** | *** |
SM + 160N | nd | -- | *** | ns | ns | ns | -- | ** | ns | ns | *** | -- | *** | *** | ns |
Initial Fertilization | Treatment | 2015 | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NDVI Readings | NDVI Readings | NDVI Readings | ||||||||
GS32 | GS37 | GS65 | GS32 | GS37 | GS65 | GS32 | GS37 | GS65 | ||
Conventional | 40N + 0N | B | C | C | C | C | C | ns | ns | C |
40N + 40N | A | B | B | B | B | B | B | |||
40N + 80N | A | AB | AB | AB | AB | A | AB | |||
40N + 120N | A | A | A | A | A | A | A | |||
40N + 160N | A | A | A | A | A | A | A | |||
Dairy slurry | DS + 0N | B | C | C | C | C | C | ns | ns | C |
DS + 40N | B | B | B | B | B | B | B | |||
DS + 80N | A | A | A | AB | A | AB | A | |||
DS + 120N | A | A | A | AB | A | A | A | |||
DS + 160N | A | A | A | A | A | A | A | |||
Sheep manure | SM + 0N | B | C | C | C | C | C | ns | ns | C |
SM + 40N | B | B | B | B | BC | B | B | |||
SM + 80N | A | A | A | AB | B | AB | A | |||
SM + 120N | A | A | A | A | A | AB | A | |||
SM + 160N | A | A | A | A | A | A | A |
N Rate at GS30 | Initial Fertilizer | 2015 | 2016 | 2017 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDVI Readings | NDVI Readings | NDVI Readings | |||||||||||
GS30 | GS32 | GS37 | GS65 | GS30 | GS32 | GS37 | GS65 | GS30 | GS32 | GS37 | GS65 | ||
0N | Conventional | A | ns | ns | ns | ns | ns | ns | ns | A | A | A | ns |
Dairy Surry | B | B | B | B | |||||||||
Sheep manure | B | B | B | B | |||||||||
40N | Conventional | -- | ns | ns | ns | -- | ns | ns | ns | -- | A | A | ns |
Dairy Surry | B | B | |||||||||||
Sheep manure | B | B | |||||||||||
80N | Conventional | -- | ns | ns | ns | -- | ns | ns | ns | -- | A | A | ns |
Dairy Surry | B | B | |||||||||||
Sheep manure | B | B | |||||||||||
120N | Conventional | -- | ns | ns | ns | -- | ns | ns | ns | -- | A | A | ns |
Dairy Surry | B | B | |||||||||||
Sheep manure | B | B | |||||||||||
160N | Conventional | -- | ns | ns | ns | -- | ns | ns | ns | -- | A | A | ns |
Dairy Surry | B | B | |||||||||||
Sheep manure | B | B |
References
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuertes-Mendizábal, T.; Aizpurua, A.; González-Moro, M.B.; Estavillo, J.M. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur. J. Agron. 2010, 33, 52–61. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for growth stages of cereals. Weed Res. 1974, 4, 415–421. [Google Scholar] [CrossRef]
- Thu, T.T.P.; Yamakawa, T.; Moe, K. Effect of nitrogen application timing on growth, grain yield and eating quality of the KD18 and TH3-3 rice varieties. J. Fac. Agricult. Kyushu Univ. 2014, 59, 55–64. [Google Scholar]
- Magney, T.S.; Eitel, J.U.H.; Huggins, D.R.; Vierling, L.A. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agricult. For. Meteorol. 2016, 217, 46–60. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Crop Sensor-Based In-Season Nitrogen Management of Wheat with Manure Application. Remote Sens. 2019, 11, 1094. [Google Scholar] [CrossRef] [Green Version]
- Basso, B.; Fiorentino, C.; Cammarano, D.; Cafiero, G.; Dardanelli, J. Analysis of rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. Eur. J. Agron. 2012, 41, 52–65. [Google Scholar] [CrossRef]
- Jeuffroy, M.; Bouchard, C. Intensity and Duration of Nitrogen Deficiency on Wheat Grain Number. Crop Sci. 1999, 39, 1385–1393. [Google Scholar] [CrossRef]
- Ravier, C.; Meynard, J.M.; Cohan, J.P.; Gate, P.; Jeuffroy, M.H. Early nitrogen deficiencies favor high yield, grain protein content and N use efficiency in wheat. Eur. J. Agron. 2017, 89, 16–24. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Sci. Rep. 2017, 7, 14073. [Google Scholar] [CrossRef] [PubMed]
- Ravier, C.; Quemada, M.; Jeuffroy, M.H. Use of a chlorophyll meter to assess nitrogen nutrition index during the growth cycle in winter wheat. Field Crops Res. 2017, 214, 73–82. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Yang, G.; Drummond, J.; Yang, H.; Clark, B.; Li, Z.; Zhao, C. Remote Sensing of Leaf and Canopy Nitrogen Status in Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model. Remote Sens. 2018, 10, 1463. [Google Scholar] [CrossRef] [Green Version]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Crop Sensor based Non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture 2020, 10, 148. [Google Scholar] [CrossRef]
- Soil Survey Staff. Illustrated Guide to Soil Taxonomy; U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2015.
- Climates of the World and Their Agricultural Potentialities; Papadakis: Buenos Aires, Argentina, 1966.
- De Mendiburu, F. Una Herramienta de Análisis Estadístico para la Investigación Agrícola. Master’s Thesis, Facultad de Economía y Planificación, Departamento Académico de Estadística e Informática, Universidad Nacional de Ingeniería (UNI-PERU), Lima, Peru, 2009. [Google Scholar]
- Colaço, A.F.; Bramley, R.G.V. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Res. 2018, 218, 126–140. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations monitoring vegetation. J. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; van Herwaarden, A.F. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil 2003, 256, 217–229. [Google Scholar] [CrossRef]
- Borràs-Gelonch, G.; Rebetzke, G.J.; Richards, R.A.; Romagosa, I. Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. J. Exp. Bot. 2012, 63, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Arrate, I.; Sanchez-Perez, J.M.; Antigüedad, I.; Vallecillo, M.A.; Iribar, V.; Ruiz, M. Groundwater pollution in Quaternary aquifer of Vitoria-Gasteiz (Basque Country, Spain). Environ. Geol. 1997, 30, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.B.; Martin, K.L.; Freeman, K.W.; Teal, R.K.; Girma, K.; Arnall, D.B.; Hodgen, P.J.; Mosali, J.; Raun, W.R.; Solie, J.B. Mid-Season Recovery from Nitrogen Stress in Winter Wheat. J. Plant Nutr. 2006, 29, 727–745. [Google Scholar] [CrossRef]
- Villegas, D.; Aparicio, N.; Blanco, R.; Royo, C. Biomass Accumulation and Main Stem Elongation of Durum Wheat Grown under Mediterranean Conditions. Ann. Bot. 2001, 88, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, N.; Bélec, C. Adapting Nitrogen Fertilization to Unpredictable Seasonal Conditions with the Least Impact on the Environment. HortTechnology 2006, 16, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Arvalis, Institut du Vegetal. Quelle Conséquence d’un Déficit Pluviométrique Consécutif d’un Apport D’engrais Azoté? 2017. Available online: https://www.arvalis-infos.fr/fertilisation-azotee-du-ble-quelle-strategie-adopter-en-conditions-seches--@/view-24509-arvarticle.html (accessed on 19 March 2020).
- Altman, D.W.; McCuistion, W.D.; Kronstad, W.E. Grain protein percentage, kernel hardness, and grain yield of winter wheat with foliar applied urea. Agron. J. 1983, 75, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; McIntosh, P.C.; Thomas, G.; Ebert, E.E.; Khimashia, N. Is a 10-day rainfall forecast of value in dry-land wheat cropping? Agricult. For. Meteorol. 2016, 216, 170–176. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Res. 2014, 64, 178–188. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yuan, F.; Cheng, S.; Cui, Z. Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy 2018, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Bonfil, D.J. Wheat phenomics in the field by RapidScan: NDVI vs. NDRE. Isr. J. Plant Sci. 2016, 1–14. [Google Scholar] [CrossRef]
- ESA, European Space Agency. User Guides, Sentinel 2-MSI. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial (accessed on 10 April 2020).
- Ortuzar-Iragorri, M.A.; Aizpurua, A.; Castellón, A.; Alonso, A.; Estavillo, J.M.; Besga, G. Use of an N-tester chlorophyll meter to tune a late third nitrogen application to wheat under humid Mediterranean conditions. J. Plant Nutr. 2017, 41, 627–635. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Walter-Shea, E.; Leavitt, B.; Arkebauer, T. Continuous Monitoring of Crop Reflectance, Vegetation Fraction, and Identification of Developmental Stages Using a Four Band Radiometer. Agron. J. 2013, 105, 1769–1779. [Google Scholar] [CrossRef] [Green Version]
Growing Season | Growth Stage | Total Rainfall (mm) | Days Elapsed |
---|---|---|---|
2015 | Sowing (24/11) to GS21 (09/03) | 521.2 | 106 |
GS21 (09/03) to GS30 (04/04) | 94.6 | 30 | |
GS30 (04/04) to GS32 (29/04) | 43.2 | 21 | |
GS32 (29/04) to GS37 (11/05) | 6 | 12 | |
GS37 (11/05) to GS65 (28/05) | 13.8 | 17 | |
GS65 (28/05) to harvest (21/07) | 55.5 | 54 | |
2016 | Sowing (06/11) to GS21 (19/01) | 168.1 | 74 |
GS21 (19/01) to GS30 (17/03) | 296.1 | 56 | |
GS30 (17/03) to GS32 (30/03) | 16.5 | 13 | |
GS32 (30/03) to GS37 (06/04) | 24.3 | 7 | |
GS37 (06/04) to GS65 (25/05) | 71.2 | 49 | |
GS65 (25/05) to harvest (02/08) | 70.5 | 69 | |
2017 | Sowing (18/11) to GS21 (02/03) | 271.3 | 105 |
GS21 (02/03) to GS30 (06/04) | 57.6 | 35 | |
GS30 (06/04) to GS32 (12/04) | 0 | 6 | |
GS32 (12/04) to GS37 (25/04) | 0 | 13 | |
GS37 (25/04) to GS65 (30/05) | 82.4 | 35 | |
GS65 (30/05) to harvest (02/08) | 114.3 | 63 |
Treatment Name | Initial Fertilization | Topdressing at GS21 (kg N ha−1) | Topdressing at GS30 (kg N ha−1) |
---|---|---|---|
40N + 0N | Conventional [-] | 40 | 0 |
40N + 40N | 40 | ||
40N + 80N | 80 | ||
40N + 120N | 120 | ||
40N + 160N | 160 | ||
DS + 0N | Dairy slurry (DS) [40 t ha−1] | -- | 0 |
DS + 40N | 40 | ||
DS + 80N | 80 | ||
DS + 120N | 120 | ||
DS + 160N | 160 | ||
SM + 0N | Sheep manure (SM) [40 t ha−1] | -- | 0 |
SM + 40N | 40 | ||
SM + 80N | 80 | ||
SM + 120N | 120 | ||
SM + 120N | 160 | ||
0N | Control [-] | -- | -- |
280N | Overfertilized [-] | 80 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranguren, M.; Castellón, A.; Aizpurua, A. Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool. Remote Sens. 2020, 12, 2749. https://doi.org/10.3390/rs12172749
Aranguren M, Castellón A, Aizpurua A. Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool. Remote Sensing. 2020; 12(17):2749. https://doi.org/10.3390/rs12172749
Chicago/Turabian StyleAranguren, Marta, Ander Castellón, and Ana Aizpurua. 2020. "Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool" Remote Sensing 12, no. 17: 2749. https://doi.org/10.3390/rs12172749
APA StyleAranguren, M., Castellón, A., & Aizpurua, A. (2020). Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool. Remote Sensing, 12(17), 2749. https://doi.org/10.3390/rs12172749