Retrieval of Ocean Surface Wind Speed Using Reflected BPSK/BOC Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orbital and Instrumental Specifications of TRITON Mission
2.2. The Ground Truth Data: European Centre for Medium-Range Weather Forecasts Product
2.3. The Proposed GNSS-R Measurement: Composite Delay-Doppler Maps
2.4. The Observable and Wind Speed Retrieval Algorithm
2.5. Summary of the Proposed Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BOC | Binary Offset Carrier |
BPSK | Binary Phase Shift Keying |
cDDM | Composite Delay Doppler Map |
cDDMA | Composite Delay Doppler Map Average |
cDWA | Composite Delay Waveform Average |
cDP | Composite Delay Doppler Map Peak |
CYGNSS | Cyclone Global Navigation Satellite System |
DDM | Delay Doppler Map |
DDMA | Delay Doppler Map Average |
DW | Delay Waveform |
ECMWF | European Centre for Medium-Range Weather Forecasts |
FDS | Fully Developed Sea |
GMF | Geophysical Model Function |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
LES | Leading Edge Slope |
LHCP | Left Hand Circular Polarized |
NDW | Normalized Delay Waveform |
NOAA | National Oceanic and Atmospheric Administration |
NSPO | National Space Organization |
PVT | Position, Velocity, Time |
QZSS | Quasi-Zenith Satellite System |
RO | Radio Occultation |
TDS | TechDemoSate |
Ocean Surface Wind Speed reference to a 10 m Height | |
YSLF | Young Sea/Limited Fetch |
References
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Vall-Llossera, M.; Valencia, E.; Marchan-Hernandez, J.F.; Ramos-Perez, I. Soil moisture retrieval using GNSS-R techniques: Experimental results over a bare soil field. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3616–3624. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Camps, A.; Vall-Llossera, M.; Bosch-Lluis, X.; Monerris, A.; Ramos-Perez, I.; Valencia, E.; Marchan-Hernandez, J.F.; Martinez-Fernandez, J.; Baroncini-Turricchia, G. Land geophysical parameters retrieval using the interference pattern GNSS-R technique. IEEE Trans. Geosci. Remote Sens. 2010, 49, 71–84. [Google Scholar] [CrossRef]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Fabra, F.; Nogués-Correig, O.; Oliveras, S.; Ribó, S.; Rius, A. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets. Radio Sci. 2011, 46, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Huang, W. Spaceborne GNSS-R sea ice detection using delay-Doppler maps: First results from the UK TechDemoSat-1 mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4795–4801. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea ice detection using UK TDS-1 GNSS-R data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4989–5001. [Google Scholar] [CrossRef] [Green Version]
- Gleason, S.; Hodgart, S.; Sun, Y.; Gommenginger, C.; Mackin, S.; Adjrad, M.; Unwin, M. Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Akos, D.M.; Zavorotny, V.U.; Smith, J.A.; Camps, A.; Fairall, C.W. Airborne GNSS-R wind retrievals using delay–Doppler maps. IEEE Trans. Geosci. Remote Sens. 2012, 51, 626–641. [Google Scholar] [CrossRef]
- Foti, G.; Gommenginger, C.; Jales, P.; Unwin, M.; Shaw, A.; Robertson, C.; Rosello, J. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on remote sensing using GNSS bistatic radar of opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef] [Green Version]
- Clarizia, M.P.; Ruf, C.S.; Jales, P.; Gommenginger, C. Spaceborne GNSS-R minimum variance wind speed estimator. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6829–6843. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.S. Wind speed retrieval algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) mission. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4419–4432. [Google Scholar] [CrossRef]
- Ruf, C.S.; Balasubramaniam, R. Development of the CYGNSS geophysical model function for wind speed. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 66–77. [Google Scholar] [CrossRef]
- Ruf, C.S.; Gleason, S.; McKague, D.S. Assessment of CYGNSS wind speed retrieval uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 87–97. [Google Scholar] [CrossRef]
- Park, J.; Said, F.; Katzberg, S.J.; Soisuvarn, S.; Jelenak, Z.; Chang, P.S. Analysis of CYGNSS wind characteristics with NOAA L2 retrievals and TES method. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8043–8045. [Google Scholar]
- Gao, H.; Yang, D.; Wang, F.; Wang, Q.; Li, X. Retrieval of Ocean Wind Speed Using Airborne Reflected GNSS Signals. IEEE Access 2019, 7, 71986–71998. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, Y.; Kasantikul, K. A Novel Method for Ocean Wind Speed Detection Based on Energy Distribution of Beidou Reflections. Sensors 2019, 19, 2779. [Google Scholar] [CrossRef] [Green Version]
- Juang, J.-C.; Lin, C.-T.; Tsai, Y.-F. Comparison and Synergy of BPSK and BOC Modulations in GNSS Reflectometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1959–1971. [Google Scholar] [CrossRef]
- Kaplan, E.; Hegarty, C. Undestanding GPS/GNSS: Principles and applications. In GNSS Technology and Applications Series; Artech House Publisher: Norwood, MA, USA, 2017. [Google Scholar]
- Juang, J.-C.; Ma, S.-H.; Lin, C.-T. Study of GNSS-R techniques for FORMOSAT mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4582–4592. [Google Scholar] [CrossRef]
- Juang, J.-C.; Tsai, Y.-F.; Lin, C.-T. FORMOSAT-7R Mission for GNSS Reflectometry. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5177–5180. [Google Scholar]
- Gleason, S. Algorithm Theoretical Basis Document Level 1A DDM Calibration. Available online: https://clasp-research.engin.umich.edu/missions/cygnss/reference/148-0136_ATBD_L1A_DDMCalibration_Rev2_Aug2018_release.pdf (accessed on 20 August 2020).
- Gleason, S.; Ruf, C.S.; O’Brien, A.J.; McKague, D.S. The CYGNSS Level 1 calibration algorithm and error analysis based on on-orbit measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 37–49. [Google Scholar] [CrossRef]
- Gleason, S.; Ruf, C.S.; Clarizia, M.P.; O’Brien, A.J. Calibration and unwrapping of the normalized scattering cross section for the cyclone global navigation satellite system. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2495–2509. [Google Scholar] [CrossRef]
- Fabra, F.; Cardellach, E.; Li, W.; Rius, A. WAVPY: A GNSS-R open source software library for data analysis and simulation. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4125–4128. [Google Scholar]
- Unwin, M.; Jales, P.; Tye, J.; Gommenginger, C.; Foti, G.; Rosello, J. Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploitation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4525–4539. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Garrison, J.L. Generalized linear observables for ocean wind retrieval from calibrated GNSS-R delay–Doppler maps. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1142–1155. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Orbit | Sun-synchronous |
Altitude | 550–650 km |
Period | 96 min |
Nadir antenna gain | 14.5 dBi |
Sampling rate | 16.368 MHz |
Frequency | 1575.42 MHz |
Parameter | Value |
---|---|
Incidence angle | 10, 20, 30, 40, 50, 60 deg. |
Wind speed | 3, 5, 10, 15, 20, 30 m/s |
Model | Equation | |
---|---|---|
Power model | (T 3.1) | |
Exponential model | (T 3.2) | |
Two-term exponential model | (T 3.3) | |
Polynomial model | (T 3.4) | |
Exp-power model (dual model) | (T 3.5) |
Observable | Bias | RMSE | R |
---|---|---|---|
cDDMA | −0.0057 | 1.0294 | 0.9603 |
cDWA | 0.0002 | 0.9811 | 0.9640 |
cDP | 0.0001 | 0.9657 | 0.9652 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-Y.; Juang, J.-C. Retrieval of Ocean Surface Wind Speed Using Reflected BPSK/BOC Signals. Remote Sens. 2020, 12, 2698. https://doi.org/10.3390/rs12172698
Wang H-Y, Juang J-C. Retrieval of Ocean Surface Wind Speed Using Reflected BPSK/BOC Signals. Remote Sensing. 2020; 12(17):2698. https://doi.org/10.3390/rs12172698
Chicago/Turabian StyleWang, Hao-Yu, and Jyh-Ching Juang. 2020. "Retrieval of Ocean Surface Wind Speed Using Reflected BPSK/BOC Signals" Remote Sensing 12, no. 17: 2698. https://doi.org/10.3390/rs12172698
APA StyleWang, H.-Y., & Juang, J.-C. (2020). Retrieval of Ocean Surface Wind Speed Using Reflected BPSK/BOC Signals. Remote Sensing, 12(17), 2698. https://doi.org/10.3390/rs12172698