Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Datasets
2.3. Data Analysis
3. Results
3.1. Spatiotemporal Variation of NDVI
3.2. Effect of Climatic Factors on NDVI
3.3. Threshold NDVI under Water Balance
4. Discussion
4.1. Different Change Patterns of Vegetation Growth
4.2. Integrated Effect of Environmental Factors on Vegetation Growth
4.3. Threshold Vegetation Greenness and Its Response to Precipitation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duan, F.; Ji, Q.; Liu, B.Y.; Fan, Y. Energy investment risk assessment for nations along China’s Belt & Road Initiative. J. Clean. Prod. 2018, 170, 535–547. [Google Scholar]
- Shi, K.F.; Yu, B.L.; Huang, C.; Wu, J.P.; Sun, X.F. Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road. Energy 2018, 150, 847–859. [Google Scholar] [CrossRef]
- Qi, X.Z.; Jia, J.H.; Liu, H.Y.; Lin, Z.S. Relative importance of climate change and human activities for vegetation changes on China’s silk road economic belt over multiple timescales. Catena 2019, 180, 224–237. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhou, Q.M.; Chen, X.; Qian, C.; Wang, S.S.; Li, J.F. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatiol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Haag, I.; Jones, P.D.; Samimi, C. Central Asia’s changing climate: How temperature and precipitation have changed across time, space, and altitude. Climate 2019, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Chang. 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y.J. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, Z.Q.; Li, J.L.; Gang, C.C.; Zhang, Y.Z.; Zhang, Y.; Odeh, I.; Qi, J.G. Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. J. Arid Environ. 2016, 135, 164–172. [Google Scholar] [CrossRef]
- Xin, J.Y.; Gong, C.S.; Wang, S.G.; Wang, Y.S. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China. Atmos. Res. 2016, 171, 56–65. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [Google Scholar] [CrossRef]
- Han, T.T.; Chen, H.P.; Hao, X.; Wang, H.J. Projected changes in temperature and precipitation extremes over the Silk Road Economic Belt regions by the Coupled Model Intercomparison Project Phase 5 multi-model ensembles. Int. J. Climatol. 2018, 38, 4077–4091. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyamba, A.; Tucker, C.J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 2005, 63, 596–614. [Google Scholar] [CrossRef]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Propastin, P.A.; Kappas, M.; Muratova, N.R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J. Environ. Inform. 2008, 12, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.F.; Wang, W.G.; Fu, J.Y. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. UK 2020, 10, 830. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.Q.; Yu, Z.B.; Yang, C.G.; Ji, X.B.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agr. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Ning, T.T.; Zhou, S.; Chang, F.Y.; Shen, H.; Li, Z.; Liu, W.Z. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agr. For. Meteorol. 2019, 275, 59–68. [Google Scholar] [CrossRef]
- Du, T.; Wang, L.; Yuan, G.F.; Sun, X.M.; Wang, S.S. Effects of distinguishing vegetation types on the estimates of remotely sensed evapotranspiration in arid regions. Remote Sens. Basel 2019, 11, 2856. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.S.; Shao, M.A. Mathematical model for determining vegetation carrying capacity of soil water. J. Hydraul. Eng. 2004, 35, 95–99. [Google Scholar]
- Xia, Y.Q.; Shao, M.A. Soil water carrying capacity for vegetation: A hydrologic and biogeochemical process model solution. Ecol. Model. 2008, 214, 112–124. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Shao, M.A. Evaluation of soil water-carrying capacity for vegetation: The concept and the model. Acta Agr. Scand. B Soil Plant Sci. 2009, 59, 342–348. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, Y.H.; Yu, P.T.; Cheng, L.L.; Xiong, W.; Xu, L.H.; Du, A.P. Vegetation carrying capacity based on soil water on typical slopes in the Diediegou small watershed of Liupan Mountains. Chin. J. Plant Ecol. 2009, 33, 1101–1111. [Google Scholar]
- Wang, N.; Bi, H.X.; Guo, M.X.; Kong, L.X.; Hou, G.R.; Chang, Y.F. Study on soil water vegetation carrying capacity of Robinia pseudoacacia Plantation in the loess gully area of western Shanxi Province. J. Soil Water Conserv. 2019, 33, 213–219. [Google Scholar]
- Tian, Y.L.; He, Y.H.; Guo, L.S. Soil water carrying capacity of vegetation in the northeast of Ulan Buh Desert. Sci. Silvae Sin. 2008, 44, 13–19. [Google Scholar] [CrossRef]
- Liu, B.X.; Shao, M.A. Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China. Agr. Water Manag. 2015, 159, 176–184. [Google Scholar] [CrossRef]
- Zhang, J.T.; Zhang, Y.Q.; Qin, S.G.; Wu, B.; Ding, G.D.; Wu, X.Q.; Gao, Y.; Zhu, Y.K. Carrying capacity for vegetation across northern China drylands. Sci. Total Environ. 2020, 710, 136391. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Alcaraz-Segura, D.; Chuvieco, E.; Epstein, H.E.; Kasischke, E.S.; Trishchenko, A. Debating the greening vs. browning of the North American boreal forest: Differences between satellite datasets. Glob. Chang. Biol. 2010, 16, 760–770. [Google Scholar] [CrossRef]
- Guay, K.C.; Beck, P.S.A.; Berner, L.T.; Goetz, S.J.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef] [PubMed]
- Cornes, R.C.; Schrier, G.V.D.; Squintu, A.A. A reappraisal of the thermal growing season length across Europe. Int. J. Climatol. 2019, 39, 1787–1795. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Chan, D.Z.; Desjardins, R.L. Near-surface biases in ERA5 over the Canadian prairies. Front. Environ. Sci. 2019, 7, 129. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.Q.; Feng, X.M.; Fu, B.J.; Wang, S.; Jie, F.; Pan, S.F. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: New York, NY, USA, 2013; pp. 3–17. [Google Scholar]
- Grace, J.B.; Schoolmaster, D.R.; Guntenspergen, G.R.; Little, A.M.; Mitchell, B.R.; Miller, K.M.; Schweiger, E.W. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 2012, 3. [Google Scholar] [CrossRef]
- Dinc, M.; Duman, A.; Tufekcioglu, M.; Tufekcioglu, A. Biomass allocation in relation to precipitation, temperature and soil properties in the grassland of Coruh River Basin, Turkey: Using structural equation modelling with Amos. Int. J. Ecosyst. Ecol. Sci. 2018, 8, 457–470. [Google Scholar] [CrossRef]
- Jeganathan, C.; Dash, J.; Atkinson, P.M. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens. Environ. 2014, 143, 154–170. [Google Scholar] [CrossRef]
- Jong, R.D.; Verbesselt, J.; Schaepman, M.E.; Bruin, S.D. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Brown, M.E.; Kug, J.S.; Piao, S.L. Browning in desert boundaries in Asia in recent decades. J. Geophys. Res. 2011, 116, D02103. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Chang. Biol. 2006, 12, 42–55. [Google Scholar] [CrossRef]
- Liu, H.Y.; Piao, S.L. Drought threatened semi-arid ecosystems in the Inner Asia. Agr. For. Meteorol. 2013, 178–179, 1–2. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Kim, H.; Emmerich, W.; Scott, R.L.; Huxman, T.E.; Huete, A.R. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. J. Arid Environ. 2007, 70, 443–462. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Van Dijk, A.I.J.M.; Mattersdorf, G.; Beringer, J.; Hutley, L.B.; Leuning, R.; Pipunic, R.C.; Sherman, B.S. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydrol. 2009, 369, 107–119. [Google Scholar] [CrossRef]
Desert Area Type | Threshold Mean Annual NDVI | Mean Annual Precipitation | Mean Annual NDVI Change with Precipitation Change |
---|---|---|---|
Hot arid desert | 0.1041 ± 0.0020 | 83.62 | 0.0057/100 mm |
Cold arid desert | 0.1337 ± 0.0047 | 169.39 | 0.0245/100 mm |
Cold arid semi-desert | 0.1346 ± 0.0046 | 220.96 | 0.0350/100 mm |
Hot arid desert semi-desert | 0.0951 ± 0.0016 | 86.76 | 0.0001/100 mm |
Polar desert tundra | 0.0776 ± 0.0047 | 615.76 | 0.0037/100 mm |
Hot arid desert shrub | 0.1071 ± 0.0016 | 66.70 | 0.0023/100 mm |
Cold arid desert steppe | 0.1377 ± 0.0051 | 240.21 | 0.0247/100 mm |
Polar desert steppe | 0.0701 ± 0.0031 | 406.04 | 0.0030/100 mm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-J.; Shi, F.-Z.; Hu, X.; Li, X.-Y. Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt. Remote Sens. 2020, 12, 2452. https://doi.org/10.3390/rs12152452
Ma Y-J, Shi F-Z, Hu X, Li X-Y. Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt. Remote Sensing. 2020; 12(15):2452. https://doi.org/10.3390/rs12152452
Chicago/Turabian StyleMa, Yu-Jun, Fang-Zhong Shi, Xia Hu, and Xiao-Yan Li. 2020. "Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt" Remote Sensing 12, no. 15: 2452. https://doi.org/10.3390/rs12152452
APA StyleMa, Y.-J., Shi, F.-Z., Hu, X., & Li, X.-Y. (2020). Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt. Remote Sensing, 12(15), 2452. https://doi.org/10.3390/rs12152452