Beyond Never-Never Land: Integrating LiDAR and Geophysical Surveys at the Johnston Site, Pinson Mounds State Archaeological Park, Tennessee, USA
Abstract
1. Introduction
2. The Johnston Site within the Middle Woodland Era Pinson Mounds Landscape
Previous Research and Cartography at the Johnston Site
3. Materials and Methods
3.1. LiDAR-Derived Imagery and Examination of the Johnston Site’s Historic Map in GIS
3.2. Magnetic Gradiometer Survey
3.3. Large-Area Surface Magnetic Susceptibility
3.4. Electromagnetic Induction
3.5. Test Excavations of Geophysical Anomalies
4. Results
4.1. Analysis of LiDAR-Derived Imagery Compared with the 1917 Map of the Johnston Site
4.2. Gradiometer Results from the Johnston Site
4.3. Results from Large-Scale Surface Magnetic Susceptibility Surveys at the Johnston Site
4.4. Results from an Electromagnetic Induction Survey of Mound 8
5. Discussion
5.1. Toward a New Map of the Johnston Site
5.2. Beyond Never-Never Land: Developing Future Questions for the Johnston Site
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bewley, R.H.; Crutchley, S.P.; Shell, C.A. New Light on an Ancient Landscape: LiDAR Survey in the Stonehenge World Heritage Site. Antiquity 2005, 79, 636–647. [Google Scholar] [CrossRef]
- Burks, J.; Cook, R.A. Beyond Squier and Davis: Rediscovering Ohio’s Earthworks Using Geophysical Remote Sensing. Am. Antiq. 2011, 76, 667–689. [Google Scholar] [CrossRef]
- Chase, A.F.; Chase, D.Z.; Fisher, C.T.; Leisz, S.J.; Weishampel, J.F. Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proc. Natl. Acad. Sci. USA 2012, 109, 12916–12921. [Google Scholar] [CrossRef] [PubMed]
- Conyers, L.B. Ground-Penetrating Radar for Archaeology; AltaMira Press: Walnut Creek, CA, USA, 2004; ISBN 0-7591-0772-6. [Google Scholar]
- Cowley, D.; Standring, R.A.; Abicht, M.J. (Eds.) Landscapes through the Lens: Aerial Photographs and Historic Environment; Oxbow Books: Oxford, UK, [Distributed in the US by]; David Brown Book Co.: Oakville, CT, USA, 2010; ISBN 978-1-84217-981-9. [Google Scholar]
- Eppelbaum, L.V.; Khesin, B.E.; Itkis, S.E. Prompt Magnetic Investigations of Archaeological Remains in Areas of Infrastructure Development: Israeli Experience. Archaeol. Prospect. 2001, 8, 163–185. [Google Scholar] [CrossRef]
- Evans, D.H.; Fletcher, R.J.; Pottier, C.; Chevance, J.-B.; Soutif, D.; Tan, B.S.; Im, S.; Ea, D.; Tin, T.; Kim, S.; et al. Uncovering Archaeological Landscapes at Angkor Using LiDAR. Proc. Natl. Acad. Sci. USA 2013, 110, 12595–12600. [Google Scholar] [CrossRef]
- Gaffney, C.F.; Gater, J. Revealing the Buried Past: Geophysics for Archaeologists; Tempus: Stroud, UK, 2003; ISBN 0-7524-2556-0. [Google Scholar]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-31856-6. [Google Scholar]
- McKinnon, D.P.; Haley, B.S. (Eds.) Archaeological Remote Sensing in North America: Innovative Techniques for Anthropological Applications; University of Alabama Press: Tuscaloosa, AL, USA, 2017; ISBN 978-0-8173-1959-5. [Google Scholar]
- Henry, E.R.; Laracuente, N.R.; Case, J.S.; Johnson, J.K. Incorporating Multistaged Geophysical Data into Regional-Scale Models: A Case Study from an Adena Burial Mound in Central Kentucky. Archaeol. Prospect. 2014, 21, 15–26. [Google Scholar] [CrossRef]
- Howey, M.C.L.; Sullivan, F.B.; Tallant, J.; Kopple, R.V.; Palace, M.W. Detecting Precontact Anthropogenic Microtopographic Features in a Forested Landscape with LiDAR: A Case Study from the Upper Great Lakes Region, AD 1000–1600. PLoS ONE 2016, 11, e0162062. [Google Scholar] [CrossRef]
- Johnson, J.K. (Ed.) Remote Sensing in Archaeology: An Explicitly North American Perspective; University of Alabama Press: Tuscaloosa, AL, USA, 2006; ISBN 978-0-8173-5343-8. [Google Scholar]
- Johnson, K.M.; Ouimet, W.B. Rediscovering the Lost Archaeological Landscape of Southern New England Using Airborne Light Detection and Ranging (LiDAR). J. Archaeol. Sci. 2014, 43, 9–20. [Google Scholar] [CrossRef]
- Kvamme, K.L. Geophysical Surveys as Landscape Archaeology. Am. Antiq. 2003, 68, 435–457. [Google Scholar] [CrossRef]
- Opitz, R.S.; Cowley, D.C. Interpreting Archaeological Topography: Lasers, 3D Data, Observation, Visualisation and Applications. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data, and Ground Observation; Opitz, R.S., Cowley, D.C., Eds.; Oxbow Books: Oxford, UK, 2013; pp. 1–12. [Google Scholar]
- Pluckhahn, T.J.; Thompson, V.D. Integrating LiDAR Data and Conventional Mapping of the Fort Center Site in South-Central Florida: A Comparative Approach. J. Field Archaeol. 2012, 37, 289–301. [Google Scholar] [CrossRef]
- Riley, M.A.; Tiffany, J.A. Using LiDAR Data to Locate a Middle Woodland Enclosure and Associated Mounds, Louisa County, Iowa. J. Archaeol. Sci. 2014, 52, 143–151. [Google Scholar] [CrossRef]
- VanValkenburgh, P.; Walker, C.P.; Sturm, J.O. Gradiometer and Ground-penetrating Radar Survey of Two Reducción Settlements in the Zaña Valley, Peru. Archaeol. Prospect. 2015, 22, 117–129. [Google Scholar] [CrossRef]
- VanValkenburgh, P.; Cushman, K.C.; Butters, L.J.C.; Vega, C.R.; Roberts, C.B.; Kepler, C.; Kellner, J. Lasers Without Lost Cities: Using Drone Lidar to Capture Architectural Complexity at Kuelap, Amazonas, Peru. J. Field Archaeol. 2020, 45, S75–S88. [Google Scholar] [CrossRef]
- Venter, M.L.; Shields, C.R.; Ordóñez, M.D.C. Mapping Matacanela: The Complementary Work of LiDAR and Topographical Survey in Southern Veracruz, Mexico. Anc. Mesoam. 2018, 29, 81–92. [Google Scholar] [CrossRef]
- Henry, E.R.; Shields, C.R.; Kidder, T.R. Mapping the Adena-Hopewell Landscape in the Middle Ohio Valley, USA: Multi-Scalar Approaches to LiDAR-Derived Imagery from Central Kentucky. J. Archaeol. Method Theory 2019, 26, 1513–1555. [Google Scholar] [CrossRef]
- Thompson, V.D.; Marquardt, W.H.; Walker, K.J. A Remote Sensing Perspective on Shoreline Modification, Canal Construction and Household Trajectories at Pineland along Florida’s Southwestern Gulf Coast: Remote Sensing at Pineland. Archaeol. Prospect. 2014, 21, 59–73. [Google Scholar] [CrossRef]
- Thompson, V.; DePratter, C.; Lulewicz, J.; Lulewicz, I.; Roberts Thompson, A.; Cramb, J.; Ritchison, B.; Colvin, M. The Archaeology and Remote Sensing of Santa Elena’s Four Millennia of Occupation. Remote Sens. 2018, 10, 248. [Google Scholar] [CrossRef]
- Alizadeh, K.; Ur, J.A. Formation and Destruction of Pastoral and Irrigation Landscapes on the Mughan Steppe, North-Western Iran. Antiquity 2007, 81, 148–160. [Google Scholar] [CrossRef]
- Mlekuž, D. Messy Landscapes: LiDAR and the Practices of Landscaping. In Interpreting Archaeological Topography: Lasers, 3D Data, Observation, Visualisation and Applications; Cowley, D.C., Opitz, R.S., Eds.; Oxbow Books: Oxford, UK, 2013; pp. 90–101. [Google Scholar]
- Johnson, K.M.; Ouimet, W.B. An Observational and Theoretical Framework for Interpreting the Landscape Palimpsest Through Airborne LiDAR. Appl. Geogr. 2018, 91, 32–44. [Google Scholar] [CrossRef]
- Thompson, V.D.; Arnold, P.J.; Pluckhahn, T.J.; Vanderwarker, A.M. Situating Remote Sensing in Anthropological Archaeology. Archaeol. Prospect. 2011, 18, 195–213. [Google Scholar] [CrossRef]
- Horsley, T.; Wright, A.; Barrier, C. Prospecting for New Questions: Integrating Geophysics to Define Anthropological Research Objectives and Inform Excavation Strategies at Monumental Sites. Archaeol. Prospect. 2014, 21, 75–86. [Google Scholar] [CrossRef]
- Kwas, M.L.; Mainfort, R.C., Jr. The Johnston Site: Precursor to Pinson Mounds? Tenn. Anthropol. 1986, 11, 30–41. [Google Scholar]
- Myer, W.E. Stone Age Man in the Middle South n.d.; Manuscript available from the Tennessee Division of Archaeology; Tennessee Division of Archaeology: Nashville, TN, USA, 1967.
- Kolen, J.; Renes, J.; Hermans, R. (Eds.) Landscape Biographies: Geographical, Historical and Archaeological Perspectives on the Production and Transmission of Landscapes; Amsterdam University Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Carr, C.; Case, D.T. (Eds.) Gathering Hopewell: Society, Ritual, and Interaction; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005. [Google Scholar]
- Charles, D.K.; Buikstra, J.E. (Eds.) Recreating Hopewell; University Press of Florida: Gainesville, FL, USA, 2006; ISBN 0-8130-2898-1. [Google Scholar]
- Henry, E.R. Earthen Monuments and Social Movements in Eastern North America: Adena-Hopewell Enclosures on Kentucky’s Bluegrass Landscape. Ph.D. Dissertation, Washington University St. Louis, St. Louis, MO, USA, 2018. [Google Scholar]
- Henry, E.R.; Barrier, C.R. The Organization of Dissonance in Adena-Hopewell Societies of Eastern North America. World Archaeol. 2016, 48, 87–109. [Google Scholar] [CrossRef]
- Redmond, B.G.; Ruby, B.J.; Burks, J. (Eds.) Encountering Hopewell in the Twenty-First Century, Ohio and Beyond: Volume One: Monuments and Ceremony; University of Akron Press: Akron, OH, USA, 2019; ISBN 978-1-62922-102-1. [Google Scholar]
- Redmond, B.G.; Ruby, B.J.; Burks, J. Encountering Hopewell in the Twenty-First Century, Ohio and Beyond: Volume Two: Settlements, Foodways, and Interaction; University of Akron Press: Akron, OH, USA, 2020; ISBN 978-1-62922-103-8. [Google Scholar]
- Thompson, V.D.; Pluckhahn, T.J. Monumentalization and Ritual Landscapes at Fort Center in the Lake Okeechobee Basin of South Florida. J. Anthropol. Archaeol. 2012, 31, 49–65. [Google Scholar] [CrossRef]
- Wallis, N.J. The Swift Creek Gift: Vessel Exchange on the Atlantic Coast; University of Alabama Press: Tuscaloosa, AL, USA, 2011; ISBN 978-0-8173-5629-3. [Google Scholar]
- Wright, A.P. Local and “Global” Perspectives on the Middle Woodland Southeast. J. Archaeol. Res. 2017, 25, 35–83. [Google Scholar] [CrossRef]
- Wright, A.P.; Henry, E.R. (Eds.) Early and Middle Woodland Landscapes of the Southeast; University Press of Florida: Gainesville, FL, USA, 2013; ISBN 0-8130-4460-X. [Google Scholar]
- Gremillion, K.J. The Development and Dispersal of Agricultural Systems in the Woodland Period Southeast. In The Woodland Southeast; Anderson, D.G., Mainfort, R.C., Eds.; University of Alabama Press: Tuscaloosa, AL, USA, 2002; pp. 483–501. [Google Scholar]
- Mueller, N.G. Mound Centers and Seed Security: A Comparative Analysis of Botanical Assemblages from Middle Woodland Sites in the Lower Illinois Valley; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mueller, N.G.; Fritz, G.J.; Patton, P.; Carmody, S.; Horton, E.T. Growing the lost crops of eastern North America’s original agricultural system. Nat. Plants 2017, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.G. The earliest occurrence of a newly described domesticate in Eastern North America: Adena/Hopewell communities and agricultural innovation. J. Anthropol. Archaeol. 2018, 49, 39–50. [Google Scholar] [CrossRef]
- Smith, B.D. Low-Level Food Production. J. Archaeol. Res. 2001, 9, 1–43. [Google Scholar] [CrossRef]
- Struever, S. Implications of vegetal remains from an Illinois Hopewell site. Am. Antiq. 1962, 27, 584–587. [Google Scholar] [CrossRef]
- Mainfort, R.C., Jr. Pinson Mounds: Middle Woodland Ceremonialism in the Midsouth; University of Arkansas Press: Fayetteville, AR, USA, 2013. [Google Scholar]
- Mainfort, R.C., Jr. Middle Woodland Ceremonialism at Pinson Mounds, Tennessee. Am. Antiq. 1988, 53, 158–173. [Google Scholar] [CrossRef]
- Stoltman, J.B. Ceramic Petrography and Hopewell Interaction; University of Alabama Press: Tuscaloosa, AL, USA, 2015; ISBN 978-0-8173-1859-8. [Google Scholar]
- Carr, C. Rethinking Interregional Hopewellian “Interaction”. In Gathering Hopewell: Society, Ritual, and Interaction; Carr, C., Case, D.T., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005; pp. 575–623. [Google Scholar]
- Rafinesque, C.S. Map of the Lower Alleghanee Monuments on North Elkhorn Creek 1820; University of Kentucky Special Collections Library: Lexington, KY, USA, 1820. [Google Scholar]
- Rafinesque, C.S. A Life of Travels and Researches in North America and South Europe; Turner: Philadelphia, PA, USA, 1836. [Google Scholar]
- Squire, E.G.; Davis, E.H. Ancient Monuments of the Mississippi Valley, 150th anniversary ed.; Smithsonian Books: Washington, DC, USA, 1998; ISBN 1-56098-898-3. [Google Scholar]
- Thomas, C. The Circular, Square, and Octagonal Earthworks of Ohio; Bulletin; Smithsonian Institution, Bureau of American Ethnology: Washington, DC, USA, 1889. [Google Scholar]
- Thomas, C. Report on Mound Explorations of the Bureau of Ethnology. In Twelfth Annual Report of the Bureau of Ethnology to the Secretary of the Smithsonian Institution, 1890–1891; Powell, J.W., Ed.; Bureau of American Ethnology: Washington, DC, USA, 1894; pp. 3–742. [Google Scholar]
- Henry, E.R. A Multistage Geophysical Approach to Detecting and Interpreting Archaeological Features at the LeBus Circle, Bourbon County, Kentucky. Archaeol. Prospect. 2011, 18, 231–244. [Google Scholar] [CrossRef]
- Mainfort, R.C., Jr.; Kwas, M.L.; Mickelson, A.M. Mapping Never-Never Land: An Examination of Pinson Mounds Cartography. Southeast. Archaeol. 2011, 30, 148–165. [Google Scholar] [CrossRef]
- Myer, W.E. Recent Archaeological Discoveries in Tennessee. Art Archaeol. 1922, 14, 141–150. [Google Scholar]
- Kokalj, Ž.; Somrak, M. Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote Sens. 2019, 11, 747. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef]
- Sampson, C.P.; Horsley, T.J. Using Multistaged Magnetic Survey and Excavation to Assess Community Settlement Organization: A Case Study from the Central Peninsular Gulf Coast of Florida. Adv. Archaeol. Pract. 2020, 8, 53–64. [Google Scholar] [CrossRef]
- Crutchley, S.; Crow, P. The Light Fantastic: Using Airborne Laser Scanning in Archeological Survey; Historic England: Swindon, UK, 2009. [Google Scholar]
- Opitz, R.S. An Overview of Airborne and Terrestrial Laser Scanning in Archaeology. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data, and Ground Observation; Opitz, R.S., Cowley, D.C., Eds.; Oxbow Books: Oxford, UK, 2013; pp. 13–31. [Google Scholar]
- Challis, K.; Forlin, P.; Kincey, M. A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data: Visualizing Archaeological Features in Airborne LiDAR. Archaeol. Prospect. 2011, 18, 279–289. [Google Scholar] [CrossRef]
- Devereux, B.J.; Amable, G.S.; Crow, P. Visualisation of LiDAR Terrain Models for Archaeological Feature Detection. Antiquity 2008, 82, 470–479. [Google Scholar] [CrossRef]
- Mayoral, A.; Toumazet, J.-P.; Simon, F.-X.; Vautier, F.; Peiry, J.-L. The Highest Gradient Model: A New Method for Analytical Assessment of the Efficiency of LiDAR-Derived Visualization Techniques for Landform Detection and Mapping. Remote Sens. 2017, 9, 120. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Hesse, R. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice; Založba ZRC: Ljubljana, Yugoslavia, 2017; ISBN 978-961-254-984-8. [Google Scholar]
- Kokalj, Ž.; Zakšek, K.; Oštir, K.; Pehani, P.; Čotar, K.; Somrak, M. Relief Visualization Toolbox, ver. 2.2.1 Manual. Remote Sens. 2016, 3, 389–415. [Google Scholar]
- Aspinall, A.; Gaffney, C.F.; Schmidt, A. Magnetometry for Archaeologists; AltaMira Press: Lanham, MD, USA, 2008; ISBN 0-7591-1348-3. [Google Scholar]
- Kvamme, K.L. Magnetometry: Nature’s Gift to Archaeology. In Remote Sensing in Archaeology: An Explicitly North American Perspective; Johnson, J.K., Ed.; University of Alabama Press: Tuscaloosa, AL, USA, 2006; pp. 205–234. [Google Scholar]
- Dalan, R.A. Magnetic Susceptibility. In Remote Sensing in Archaeology: An Explicitly North American Perspective; Johnson, J.K., Ed.; University Alabama Press: Tuscaloosa, AL, USA, 2006; pp. 161–203. [Google Scholar]
- Dearing, J.A. Environmental Magnetic Susceptibility: Using the Bartington MS2 System; Chi Publishing: Kenilworth, UK, 1999; ISBN 978-0-9523409-0-4. [Google Scholar]
- Dalan, R.A.; Banerjee, S.K. Solving Archaeological Problems Using Techniques of Soil Magnetism. Geoarchaeology 1998, 13, 3–36. [Google Scholar] [CrossRef]
- Dalan, R.A.; Bevan, B.W. Geophysical Indicators of Culturally Emplaced Soils and Sediments. Geoarchaeology 2002, 17, 779–810. [Google Scholar] [CrossRef]
- Lowe, K.M.; Mentzer, S.M.; Wallis, L.A.; Shulmeister, J. A Multi-Proxy Study of Anthropogenic Sedimentation and Human Occupation of Gledswood Shelter 1: Exploring an Interior Sandstone Rockshelter in Northern Australia. Archaeol. Anthropol. Sci. 2016, 1–26. [Google Scholar] [CrossRef]
- Schmidt, A. Archaeology, magnetic methods. In Encyclopedia of Geomagnetism and Paleomagnetism; Gubbins, D., Herrero-Bervera, E., Eds.; Springer: New York, NY, USA, 2007; pp. 23–31. [Google Scholar]
- Clay, R.B. Complementary Geophysical Survey Techniques: Why Two Ways Are Always Better Than One. Southeast. Archaeol. 2001, 20, 31–43. [Google Scholar]
- Clay, R.B. Conductivity Survey. In Remote Sensing in Archaeology: An Explicitly North American Perspective; Johnson, J.K., Ed.; University Alabama Press: Tuscaloosa, AL, USA, 2006; pp. 79–107. [Google Scholar]
- Dalan, R.A. Defining archaeological features with electromagnetic surveys at the Cahokia Mounds State Historic Site. Geophysics 1991, 56, 1280–1287. [Google Scholar] [CrossRef]
- De Smedt, P.; Saey, T.; Meerschman, E.; De Reu, J.; De Clercq, W.; Van Meirvenne, M. Comparing Apparent Magnetic Susceptibility Measurements of a Multi-receiver EMI Sensor with Topsoil and Profile Magnetic Susceptibility Data over Weak Magnetic Anomalies. Archaeol. Prospect. 2013, 21, 103–112. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Wright, A.P. Pinson Environment and Archaeology Regional Landscapes (PEARL) Project. The Johnston Site (40MD3): Excavation Report Seasons: 2014, 2015, 2016, and 2017; Report on file with the Tennessee Division of Archaeology; Tennessee Division of Archaeology: Nashville, TN, USA, 2020.
- Burks, J. The detection of lightning strikes on earthwork sites in Ohio, US. ISAP News 2018, 41, 6–8. [Google Scholar]
- Hays, C.T.; Weinstein, R.A.; Stoltman, J.B. Poverty Point Objects Reconsidered. Southeast. Archaeol. 2016, 35, 213–236. [Google Scholar] [CrossRef]
- Clay, R.B. The Essential Features of Adena Ritual and Their Implications. Southeast. Archaeol. 1998, 17, 1–21. [Google Scholar]
- Henry, E.R. Building Bundles, Building Memories: Processes of Remembering in Adena-Hopewell Societies of Eastern North America. J. Archaeol. Method Theory 2017, 24, 188–228. [Google Scholar] [CrossRef]
- Seeman, M.F. Adena “Houses” and Their Implications for Early Woodland Settlement Models in the Ohio Valley. In Early Woodland Archaeology; Farnsworth, K.B., Emerson, T.E., Eds.; Center for American Archaeology: Kampsville, IL, USA, 1986; pp. 564–580. [Google Scholar]
- Webb, W.S.; Snow, C.E. The Adena People; Reports in Anthropology and Archaeology; University of Kentucky: Lexington, KY, USA, 1945. [Google Scholar]
- Webb, W.S.; Baby, R.S. The Adena People, No. 2; Ohio Historical Society: Columbus, OH, USA, 1957. [Google Scholar]
- Jefferies, R.W.; Milner, G.R.; Henry, E.R. Winchester Farm: A Small Adena Enclosure in Central Kentucky. In Early and Middle Woodland Landscapes of the Southeast; Wright, A.P., Henry, E.R., Eds.; University Press of Florida: Gainesville, FL, USA, 2013; pp. 91–107. [Google Scholar]
- Clay, R.B. Circles and Ovals: Two Types of Adena Space. Southeast. Archaeol. 1987, 6, 46–56. [Google Scholar] [CrossRef]
- Carr, C. Scioto Hopewell Ritual Gatherings: A Review and Discussion of Previous Interpretations and Data. In Gathering Hopewell: Society, Ritual, and Ritual Interaction; Carr, C., Case, D.T., Eds.; Springer: New York, NY, USA, 2005; pp. 463–479. [Google Scholar]
- Lynott, M. Hopewell Ceremonial Landscapes of Ohio: More Than Mounds and Geometric Earthworks; Oxbow Books: Oxford, UK, 2015. [Google Scholar]
- Ruby, B.J.; Carr, C.; Charles, D.K. Community Organizations in the Scioto, Mann, and Havana Regions: A Comparative Perspective. In Gathering Hopewell: Society, Ritual, and Ritual Interaction; Carr, C., Case, D.T., Eds.; Springer: New York, NY, USA, 2005; pp. 119–176. [Google Scholar]
- Wright, A.P.; Loveland, E. Ritualised Craft Production at the Hopewell Periphery: New Evidence from the Appalachian Summit. Antiquity 2015, 89, 137–153. [Google Scholar] [CrossRef]
- Kassabaum, M.C.; Henry, E.R.; Steponaitis, V.P.; O’Hear, J.W. Between Surface and Summit: The Process of Mound Construction at Feltus: The Process of Mound Construction at Feltus. Archaeol. Prospect. 2014, 21, 27–37. [Google Scholar] [CrossRef]
- Kassabaum, M.C. Early Platforms, Early Plazas: Exploring the Precursors to Mississippian Mound-and-Plaza Centers. J. Archaeol. Res. 2019, 27, 187–247. [Google Scholar] [CrossRef]
- Kassabaum, M.C. A Method for Conceptualizing and Classifying Feasting: Interpreting Communal Consumption in the Archaeological Record. Am. Antiq. 2019, 84, 610–631. [Google Scholar] [CrossRef]
- Sea, C.D. Native American Occupation of the Singer-Hieronymus Site Complex: Developing Site History by Integrating Remote Sensing and Archaeological Excavation. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2018. [Google Scholar]
- Dalan, R.; Sturdevant, J.; Wallace, R.; Schneider, B.; Vore, S.D. Cutbank Geophysics: A New Method for Expanding Magnetic Investigations to the Subsurface Using Magnetic Susceptibility Testing at an Awatixa Hidatsa Village, North Dakota. Remote Sens. 2017, 9, 112. [Google Scholar] [CrossRef]
Mound No. | Shape | Height (m) 1 | Surface Dimensions (m) | Base Dimensions (m) |
---|---|---|---|---|
1 | conical | 2.29 | n/a | 21.34 diameter |
2 | conical | 0.61 | n/a | 18.29 diameter |
3 | conical | 0.76 | n/a | 10.36 diameter |
4 | rectangular | 6.10 | 30.48 × 30.48 | 60.96 × 60.96 |
5 | polygon | 2.93 | 18.29 × 27.43 | 42.67 × 47.24 |
6 | conical | 0.76 | n/a | 6.1 diameter |
7 | half oval | 0.76 | n/a | 4.57 × 10.67 |
8 | conical | 0.76 | n/a | 19.81 diameter |
9 | conical | 0.46 | n/a | 19.81 diameter |
10 | conical | 0.76 | n/a | 21.34 diameter |
Visualization Method | Resulting Effect |
---|---|
Multi-directional Hillshade | Artificial sunlight calculated for different azimuths but single elevation to enhance subtle topography. |
Principle Components Analysis of Multi-directional Hillshade | Summarizes information from Multi-directional Hillshade into three components; typically eliminates noise from other directions. |
Simple Local Relief Model | Trend removal via low pass Gaussian filter to deemphasize large-scale topographic features (e.g., ridges and valley bottoms). Emphasizes small-scale & subtle features. |
Sky-view Factor | Process that assesses the visibility of the sky from a pixel location & creates a proxy for illumination. Avoids directional issues with hillshading. Illuminates small rises & darkens small depressions. |
Positive Openness | Estimates mean horizon elevation angle & displays mean zenith of determine angles from pixel location. Highlights topographic convexities. |
Negative Openness | A proxy for diffuse illumination. Estimates mean horizon elevation angle & displays mean nadir of determine angles from pixel location. Highlights topographic concavities. |
Local Dominance | Calculates the dominance of an observer at a pixel location with respect to local surroundings. Emphasizes subtle rises but can also depict subtle depressions. |
Mound No. | Shape | Height (m) | Surface Dimensions (m) | Base Dimensions (m) |
---|---|---|---|---|
1 | conical | 2.03 | n/a | 18.41 diameter |
2 | conical | 0.2 | n/a | <5 diameter |
3 | conical | 0.76 | n/a | 7 diameter |
4 | rectangular | 5.8 | 32.8 × 34.6 | 57 × 59.5 |
5 | rectangular | 3.6 | 22.9 × 25 | 39.3 × 45.3 |
6 | conical | 0.5 | n/a | 5.9 diameter |
7 | half oval | 0.3 | n/a | 4 × 7 |
8 | conical | 0.6 | n/a | 20 diameter |
9 | conical | 0.46 | n/a | 20 diameter |
10 | rectangular | 0.4 | n/a | 20.5 × 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henry, E.R.; Wright, A.P.; Sherwood, S.C.; Carmody, S.B.; Barrier, C.R.; Van de Ven, C. Beyond Never-Never Land: Integrating LiDAR and Geophysical Surveys at the Johnston Site, Pinson Mounds State Archaeological Park, Tennessee, USA. Remote Sens. 2020, 12, 2364. https://doi.org/10.3390/rs12152364
Henry ER, Wright AP, Sherwood SC, Carmody SB, Barrier CR, Van de Ven C. Beyond Never-Never Land: Integrating LiDAR and Geophysical Surveys at the Johnston Site, Pinson Mounds State Archaeological Park, Tennessee, USA. Remote Sensing. 2020; 12(15):2364. https://doi.org/10.3390/rs12152364
Chicago/Turabian StyleHenry, Edward R., Alice P. Wright, Sarah C. Sherwood, Stephen B. Carmody, Casey R. Barrier, and Christopher Van de Ven. 2020. "Beyond Never-Never Land: Integrating LiDAR and Geophysical Surveys at the Johnston Site, Pinson Mounds State Archaeological Park, Tennessee, USA" Remote Sensing 12, no. 15: 2364. https://doi.org/10.3390/rs12152364
APA StyleHenry, E. R., Wright, A. P., Sherwood, S. C., Carmody, S. B., Barrier, C. R., & Van de Ven, C. (2020). Beyond Never-Never Land: Integrating LiDAR and Geophysical Surveys at the Johnston Site, Pinson Mounds State Archaeological Park, Tennessee, USA. Remote Sensing, 12(15), 2364. https://doi.org/10.3390/rs12152364