Vertical Deflections and Gravity Disturbances Derived from HY-2A Data
Abstract
:1. Introduction
2. Methods
2.1. Vertical Deflections Computation
2.2. Gravity Disturbance Computation
3. Data and Editing Criteria
4. Results and Analysis
4.1. Vertical Deflections
4.2. Gravity Disturbance
5. Discussion
5.1. Reduction of Systematic Errors
5.2. Inversion of Gravity Anomalies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hwang, C. Inverse Vening Meinesz formula and deflection-geoid formula: Applications to the predictions of gravity and geoid over the South China Sea. J. Geod. 1998, 72, 304–312. [Google Scholar] [CrossRef]
- Hwang, C.; Hsu, H.Y.; Jang, R.J. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: Applications of deflection-geoid and inverse Vening Meinesz formulae. J. Geod. 2002, 76, 407–418. [Google Scholar] [CrossRef]
- Sandwell, D.; Smith, W. Marine gravity anomaly from Geosat and ERS1 satellite altimetry. J. Geophys. Res. 1997, 102, 10039–10054. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.; Smith, W. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. J. Geophys. Res. 2009, 114, B01411. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.B.; Knudsen, P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J. Geophys. Res. 1998, 103, 8129–8137. [Google Scholar] [CrossRef]
- Andersen, O.; Knudsen, P.; Berry, P. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod. 2010, 84. [Google Scholar] [CrossRef]
- Bingham, R.J.; Knudsen, P.; Pail, P. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.; Kao, R. TOPEX/POSEIDON-derived space–time variations of the Kuroshio Current: Applications of a gravimetric geoid and wavelet analysis. Geophys. J. Int. 2002, 151, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Yu, J. Mean dynamic topography calculated by GOCE gravity field model and CNES-CLS2010 mean sea surface height. Chin. J. Geophys. 2013, 56, 1850–1856. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.F.; Olson, C.; Beale, J.R.; Wessel, P. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci. 2019, 6. [Google Scholar] [CrossRef]
- Sazhina, N.; Grushinsky, N. Gravity Prospecting; University Press of the Pacific: Honolulu, HI, USA, 2004. [Google Scholar]
- Gaina, C.; Torsvik, T.H.; van Hinsbergen, D.J.J.; Medvedev, S.; Werner, S.C.; Labails, C. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics 2013, 604, 4–25. [Google Scholar] [CrossRef]
- Yang, J.Y.; Zhang, X.H.; Zhang, F.F.; Hang, B.B.; Tian, Z.X. Preparation of the free-air gravity anomaly map in the seas of China and adjacent areas using multi-source gravity data and interpretation of the gravity field. Chin. J. Geophys. 2014, 57, 872–884. [Google Scholar]
- Eppelbaum, L.V.; Katz, Y.I. Significant tectono-geophysical features of the African-Arabian tectonic region: An overview. Geotectonics 2020, 54, 266–283. [Google Scholar] [CrossRef]
- Bao, L.; Gao, P.; Peng, H.; Jia, Y.; Shum, C.K.; Lin, M.; Guo, Q. First accuracy assessment of the HY-2A altimeter sea surface height observations: Cross-calibration results. Adv. Space Res. 2015, 55, 90–105. [Google Scholar] [CrossRef]
- Cui, W.; Wang, W.; Jie, Z.; Yang, J.; Jia, Y. Improvement of sea surface height measurements of HY-2A satellite altimeter using Jason-2. Mar. Geod. 2018. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, K.; Liu, Y.; Zhao, J.; Wang, L. Assessment of reprocessed sea surface height measurements derived from HY-2A radar altimeter and its application to the observation of 2015–2016 El Niño. Acta Oceanol. Sin. 2018, 37, 115–129. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Jin, T.; Che, D. HY-2A Altimeter Data Initial Assessment and Corresponding Two-Pass Waveform Retracker. Remote Sens. 2018, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Guo, J.; Hwang, C.; Gao, J.; Yuan, J.; Liu, X. How HY-2A/GM altimeter performs in marine gravity derivation: Assessment in the South China Sea. Geophys. J. Int. 2019, 219, 1056–1064. [Google Scholar] [CrossRef]
- Zhang, S.; Andersen, O.B.; Kong, X.; Li, H. Inversion and Validation of Improved Marine Gravity Field Recovery in South China Sea by Incorporating HY-2A Altimeter Waveform Data. Remote Sens. 2020, 12, 802. [Google Scholar] [CrossRef] [Green Version]
- Olgiati, A.; Balmino, G.; Sarrailh, M.; Green, C.M. Gravity anomalies from satellite altimetry: Comparison between computation via geoid heights and via deflections of the vertical. Bull. Géodésique. 1995, 69, 252–260. [Google Scholar] [CrossRef]
- Hwang, C.; Parsons, B. An optimal procedure for deriving marine gravity from multi-satellite altimetry. Geophys. J. Int. 1996, 125, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Heiskanen, W.A.; Moritz, H. Physical Geodesy; W.H. Freeman: New York, NY, USA, 1967. [Google Scholar]
- Stewart, R.H. Methods of Satellite Oceanography; University of California Press: San Diego, CA, USA, 1985; p. 360. [Google Scholar]
- Sandwell, D.; Smith, W. Slope correction for ocean radar altimetry. J. Geod. 2014, 88, 765–771. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. An Earth Gravitational Model to Degree 2160: EGM 2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, 13–18 April 2008. [Google Scholar]
- Shako, R.; Förste, C.; Abrikosov, O.; Bruinsma, S.; Marty, J.C.; Lemoine, J.M.; Flechtner, F.; Neumayer, H.; Dahle, C. EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data. In Observation of the System Earth from Space—CHAMP, GRACE, GOCE and Future Missions; Advanced Technologies in Earth Sciences; Flechtner, F., Sneeuw, N., Schuh, W.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhang, S. Research on Determination of Marine Gravity Anomalies from Multi-Satellite Altimeter Data. Doctoral Thesis, Wuhan University, Wuhan, China, 2017. [Google Scholar]
- Molodensky, M.C. The gravity field and figure of the earth; Tp. LIHNNTIIK: Moscow, Russia, 1960; p. 131. [Google Scholar]
- Wan, X.Y.; Zhang, R.N.; Li, Y.; Liu, B.; Sui, X.H. Matching Relationship between Precisions of Gravity Anomaly and Vertical Deflections in terms of Spherical Harmonic Function. Acta Geod. Cartogr. Sin. 2017, 46, 706–713. [Google Scholar]
- Hwang, C. Analysis of some systematic errors affecting altimeter-derived geoid gradient with applications to geoid determination over Taiwan. J. Geod. 1997, 71, 113–130. [Google Scholar] [CrossRef]
- Wan, X.Y.; Ran, J.J.; Jin, S.G. Sensitivity analysis of gravity anomalies and vertical gravity gradient data for bathymetry inversion. Mar. Geophys. Res. 2019, 40, 87–96. [Google Scholar] [CrossRef]
- Wan, X.Y.; Ran, J.J. An alternative method to improve gravity field models by incorporating GOCE gradient data. Earth Sci. Res. J. 2018, 22, 187–193. [Google Scholar] [CrossRef]
- Wan, X.Y.; Yu, J.H. Derivation of the radial gradient of the gravity based on non-full tensor satellite gravity gradients. J. Geodyn. 2013, 66, 59–64. [Google Scholar] [CrossRef]
- Braitenberg, C.; Ebbing, J. New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data. J. Geophys. Res. 2009, 114, B06402. [Google Scholar] [CrossRef] [Green Version]
Term | Range (unit: m) |
---|---|
SSH | [−130,100] |
SLA | [−2,2] |
bathymetry | >1000 |
ionosphere correction | [−0.4,0.04] |
dry troposphere correction | [−2.5,−1.9] |
wet troposphere correction | [−0.5,0.001] |
sea state bias correction | [−0.5,0] |
solid tide correction | [−1,1] |
ocean tide correction | [−5,5] |
pole tide correction | [−5,5] |
inverse barometer correction | [−2,2] |
range_rms_ku | [0.2,10] |
swh_ku | [0,11] |
sig0_ku | [7,30] |
wind_speed_alt | [0,30] |
off_nadir_angle_ku_wvf | [−0.2,0.64] |
sig0_rms_ku | [1,10] |
Region | GGM | Component of Deflection of Vertical | Mean (second) | STD (second) |
---|---|---|---|---|
Atlantic Ocean (45°W–30°W, 45°N–60°N) | EGM2008 | South-North | −0.0519 | 1.1707 |
East-West | −0.0510 | 3.2591 | ||
EIGEN-6C4 | South-North | −0.0500 | 1.1804 | |
East-West | −0.0497 | 3.2663 | ||
Indian Ocean (90°E–105°E, 30°S–15°S) | EGM2008 | South-North | 0.0722 | 0.9688 |
East-West | −0.0457 | 3.3722 | ||
EIGEN-6C4 | South-North | 0.0712 | 0.9788 | |
East-West | −0.0477 | 3.3785 | ||
Pacific Ocean (135°W–120°W, 45°S–30°S) | EGM2008 | South-North | 0.0417 | 1.2312 |
East-West | 0.0084 | 3.8764 | ||
EIGEN-6C4 | South-North | 0.0414 | 1.2373 | |
East-West | 0.0088 | 3.8776 |
Index (mGal) | 2 | 4 | 6 | 8 | 10 |
Percent | 21% | 40% | 57% | 70% | 79% |
Index (mGal) | 12 | 14 | 16 | 18 | 20 |
Percent | 86% | 91% | 94% | 96% | 98% |
Index (mGal) | 2 | 4 | 6 | 8 | 10 |
Percent | 24% | 45% | 62% | 74% | 82% |
Index (mGal) | 12 | 14 | 16 | 18 | 20 |
Percent | 87% | 91% | 94% | 96% | 97% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Annan, R.F.; Jin, S.; Gong, X. Vertical Deflections and Gravity Disturbances Derived from HY-2A Data. Remote Sens. 2020, 12, 2287. https://doi.org/10.3390/rs12142287
Wan X, Annan RF, Jin S, Gong X. Vertical Deflections and Gravity Disturbances Derived from HY-2A Data. Remote Sensing. 2020; 12(14):2287. https://doi.org/10.3390/rs12142287
Chicago/Turabian StyleWan, Xiaoyun, Richard Fiifi Annan, Shuanggen Jin, and Xiaoqi Gong. 2020. "Vertical Deflections and Gravity Disturbances Derived from HY-2A Data" Remote Sensing 12, no. 14: 2287. https://doi.org/10.3390/rs12142287
APA StyleWan, X., Annan, R. F., Jin, S., & Gong, X. (2020). Vertical Deflections and Gravity Disturbances Derived from HY-2A Data. Remote Sensing, 12(14), 2287. https://doi.org/10.3390/rs12142287