A New Method of De-Aliasing Large-Scale High-Frequency Barotropic Signals in the Mediterranean Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. TG Data and Pre-Processing
2.2. Altimeter Data and Mapping Method
2.3. EOF Analysis Method
2.4. Validation by TG
3. Results
3.1. Common Mode
3.2. Non-Linear SLA Variations
3.3. De-Aliasing of Jason1 and Envisat Data
3.4. Difference in Correction Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chent, G.; Ezraty, R. Alias impacts on the recovery of sea level amplitude and energy from altimeter measurements. Int. J. Remote Sens. 1996, 17, 3567–3576. [Google Scholar] [CrossRef]
- Mitchum, G.T. Comparison of TOPEX sea surface heights and tide gauge sea levels. J. Geophys. Res. Ocean. 1994, 99, 24541–24553. [Google Scholar] [CrossRef]
- Wang, J.; Fu, L.L.; Qiu, B.; Menemenlis, D.; Farrar, J.T.; Chao, Y.; Thompson, A.F.; Flexas, M.M. An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms. J. Atmos. Ocean. Technol. 2018, 35, 281–297. [Google Scholar] [CrossRef]
- Le Traon, P.; Nadal, F.; Ducet, N. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean. Technol. 1998, 15, 522–534. [Google Scholar] [CrossRef]
- Quinn, K.J.; Ponte, R.M. Estimating high frequency ocean bottom pressure variability. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Larnicol, G.; Le Traon, P.Y.; Ayoub, N.; De Mey, P. Mean sea level and surface circulation variability of the Mediterranean Sea from 2 years of TOPEX/POSEIDON altimetry. J. Geophys. Res. Ocean. 1995, 100, 25163–25177. [Google Scholar] [CrossRef]
- Landerer, F.W.; Volkov, D.L. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophys. Res. Lett. 2013, 40, 553–557. [Google Scholar] [CrossRef]
- Xu, Y.; Watts, D.R.; Park, J.H. De-aliasing of large-scale high-frequency barotropic signals from satellite altimetry in the Japan/East Sea. J. Atmos. Ocean. Technol. 2008, 25, 1703–1709. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, Y. Improving mesoscale observations from satellite altimetry using bottom pressure and tide gauge measurements in the Japan Sea. Int. J. Remote Sens. 2017, 38, 6247–6267. [Google Scholar] [CrossRef]
- Park, J.H.; Watts, D.R. Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Preisendorfer, R. Principal component analysis in meteorology and oceanography. Elsevier Sci. Publ. 1988, 17, 425. [Google Scholar]
- Olita, A.; Ribotti, A.; Sorgente, R.; Fazioli, L.; Perilli, A. SLA–chlorophyll-a variability and covariability in the Algero-Provençal Basin (1997–2007) through combined use of EOF and wavelet analysis of satellite data. Ocean. Dyn. 2011, 61, 89–102. [Google Scholar] [CrossRef]
- Xi, H.; Losa, S.N.; Mangin, A.; Soppa, M.A.; Garnesson, P.; Demaria, J.; Liu, Y.; d’Andon, O.H.F.; Bracher, A. Global retrieval of phytoplankton functional types based on empirical orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI data. Remote Sens. Environ. 2020, 240, 111704. [Google Scholar] [CrossRef]
- Fukumori, I.; Menemenlis, D.; Lee, T. A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea. J. Phys. Oceanogr. 2007, 37, 338–358. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, N.; Le Traon, P.Y.; De Mey, P. A description of the Mediterranean surface variable circulation from combined ERS-1 and TOPEX/POSEIDON altimetric data. J. Mar. Syst. 1998, 18, 3–40. [Google Scholar] [CrossRef]
- Cipollini, P.; Vignudelli, S.; Lyard, F.; Roblou, L. 15 years of altimetry at various scales over the Mediterranean. In Remote Sensing of the European Seas; Springer: Berlin/Heidelberg, Germany, 2008; pp. 295–306. [Google Scholar]
- Pinardi, N.; Masetti, E. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 158, 153–173. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Hunter, J.R.; Marcos, M.; Caldwell, P.; Menéndez, M.; Haigh, I. Towards a global higher-frequency sea level dataset. Geosci. Data J. 2016, 3, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Lin, H. The effect of temporal aliasing in satellite altimetry. Photogramm. Eng. Remote Sens. 2000, 66, 639–644. [Google Scholar]
- Stammer, D.; Wunsch, C.; Ponte, R.M. De-aliasing of global high frequency barotropic motions in altimeter observations. Geophys. Res. Lett. 2000, 27, 1175–1178. [Google Scholar] [CrossRef] [Green Version]
- Schlax, M.G.; Chelton, D.B. Detecting aliased tidal errors in altimeter height measurements. J. Geophys. Res. Ocean. 1994, 99, 12603–12612. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Dorandeu, J.; Le Traon, P. Effects of global mean atmospheric pressure variations on mean sea level changes from TOPEX/Poseidon. J. Atmos. Ocean. Technol. 1999, 16, 1279–1283. [Google Scholar] [CrossRef]
- Munk, W.H.; Cartwright, D.E. Tidal spectroscopy and prediction. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 259, 533–581. [Google Scholar]
- Le Traon, P.; Faugère, Y.; Hernandez, F.; Dorandeu, J.; Mertz, F.; Ablain, M. Can we merge GEOSAT follow-on with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Ocean. Technol. 2003, 20, 889–895. [Google Scholar] [CrossRef]
- Berwin, R.W. JASON-1 Sea Surface High Anomaly Product User’s Reference Manual, Version 2; JPL Phys Oceanogr; DAAC: Pasadena, CA, USA, 2003. [Google Scholar]
- Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Batoula Soussi, C. ENVISAT ALTIMETRY Level 2 User Manual. Envisat Altimetry Quality Working Group; ESA: Noordwijk, The Netherlands, 2011. [Google Scholar]
- Bretherton, F.P.; Davis, R.E.; Fandry, C. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. In Deep Sea Research and Oceanographic Abstracts; Elsevier: Amsterdam, The Netherlands, 1976; Volume 23, pp. 559–582. [Google Scholar]
- Escudier, R.; Bouffard, J.; Pascual, A.; Poulain, P.M.; Pujol, M.I. Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea. Geophys. Res. Lett. 2013, 40, 2148–2153. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; MIT Department of Meteorology: Cambridge, MA, USA, 1956. [Google Scholar]
- Sharifi, M.; Forootan, E.; Nikkhoo, M.; Awange, J.; Najafi-Alamdari, M. A point-wise least squares spectral analysis (LSSA) of the Caspian Sea level fluctuations, using TOPEX/Poseidon and Jason-1 observations. Adv. Space Res. 2013, 51, 858–873. [Google Scholar] [CrossRef] [Green Version]
- López-Calderón, J.; Manzo-Monroy, H.; Santamaría-del Ángel, E.; Castro, R.; González-Silvera, A.; Millán-Núñez, R. Variabilidad de mesoescala del Pacífico tropical mexicano mediante datos de los sensores TOPEX y SeaWiFS. Cienc. Mar. 2006, 32, 539–549. [Google Scholar] [CrossRef]
- Vignudelli, S.; Cipollini, P.; Roblou, L.; Lyard, F.; Gasparini, G.; Manzella, G.; Astraldi, M. Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Poulain, P.M.; Menna, M.; Mauri, E. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Bouzinac, C.; Font, J.; Johannessen, J. Annual cycles of sea level and sea surface temperature in the western Mediterranean Sea. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Watts, D.R.; Wimbush, M.; Park, J.H. Fundamental-mode basin oscillations in the Japan/East Sea. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
No. | St. Name | Longitude | Latitude | Record Pct. | Std. [cm] | Pct. of Std. () |
---|---|---|---|---|---|---|
1 | IBIZA | 1.45 | 38.91 | 97.0% | 11.11 | 38.46% |
2 | VALENCIA | −0.33 | 39.46 | 99.6% | 10.98 | 39.06% |
3 | BARCELONA | 2.16 | 41.34 | 98.9% | 11.43 | 43.28% |
4 | SETE-SETE | 3.70 | 43.40 | 98.9% | 13.49 | 47.85% |
5 | MARSEILLE | 5.35 | 43.28 | 98.6% | 11.49 | 43.17% |
6 | MONACO_PORT | 7.42 | 43.73 | 100.0% | 11.04 | 34.47% |
7 | GENOVA | 8.93 | 44.41 | 96.1% | 11.57 | 35.35% |
8 | LIVORNO | 10.30 | 43.55 | 100.0% | 12.51 | 35.43% |
9 | CIVITAVECCHIA | 11.79 | 42.09 | 99.7% | 11.58 | 30.20% |
10 | SALERNO | 14.77 | 40.67 | 100.0% | 13.17 | 26.13% |
11 | PALERMO | 13.37 | 38.12 | 100.0% | 12.21 | 24.46% |
12 | AJACCIO_ASPRETTO | 8.76 | 41.92 | 84.5% | 11.93 | 33.80% |
13 | PORTO_TORRES | 8.40 | 40.84 | 99.0% | 11.44 | 31.67% |
14 | CARLOFORTE | 8.31 | 39.15 | 100.0% | 11.26 | 32.77% |
15 | CAGLIARI | 9.11 | 39.21 | 99.0% | 12.21 | 28.00% |
TG Information | COR/PEL | TG-Jason1 20d Lowpass | TG-Envisat 70d Lowpass | |||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | St. Name | Lon | Lat | (%) | Original | EOF Corr. | Mean Corr. | Original | EOF Corr. | Mean Corr. |
1 | IBIZA | 1.45 | 38.91 | COR | 87.83 | 89.24 | 88.51 | 90.14 | 90.88 | 90.57 |
PEL | 18.77 | 14.04 | 17.58 | 13.34 | 14.03 | 13.4 | ||||
2 | VALENCIA | −0.33 | 39.46 | COR | 76.43 | 80.47 | 78.66 | 61.05 | 64.76 | 65.17 |
PEL | 26.03 | 14.27 | 29.56 | 33.16 | 20.92 | 38.17 | ||||
3 | BARCELONA | 2.16 | 41.34 | COR | 83.93 | 85.78 | 84.26 | 85.71 | 87.13 | 86.52 |
PEL | 22.33 | 14.79 | 28.64 | 21.76 | 15.45 | 28.1 | ||||
4 | SETE−SETE | 3.70 | 43.40 | COR | 79.33 | 83.68 | 73.68 | 80.37 | 83.74 | 78.40 |
PEL | 22.05 | 15.91 | 30.03 | 21.47 | 13.36 | 29.51 | ||||
5 | MARSEILLE | 5.35 | 43.28 | COR | 84.37 | 86.49 | 85.16 | 73.77 | 74.35 | 73.78 |
PEL | 16.85 | 13.06 | 22.53 | 19.07 | 16.04 | 20.13 | ||||
6 | MONACO_PORT | 7.42 | 43.73 | COR | 79.68 | 83.78 | 80.39 | 70.93 | 73.23 | 70.29 |
PEL | 21.38 | 17.4 | 20.25 | 29.02 | 20.68 | 29.14 | ||||
7 | GENOVA | 8.93 | 44.41 | COR | 62.13 | 66.91 | 68.86 | 69.77 | 67.91 | 64.98 |
PEL | 25.54 | 17.77 | 27.48 | 26.58 | 20.46 | 28.51 | ||||
8 | LIVORNO | 10.30 | 43.55 | COR | 82.00 | 83.83 | 76.75 | 73.03 | 75.60 | 70.98 |
PEL | 16.12 | 10.27 | 25.92 | 19.66 | 12.28 | 28.57 | ||||
9 | CIVITAVECCHIA | 11.79 | 42.09 | COR | 65.01 | 67.97 | 62.83 | 74.71 | 77.78 | 70.34 |
PEL | 24.64 | 17.2 | 31.62 | 20.56 | 14.89 | 29.94 | ||||
10 | SALERNO | 14.77 | 40.67 | COR | 50.90 | 58.25 | 48.93 | 48.85 | 50.37 | 46.86 |
PEL | 30.89 | 18.77 | 40.57 | 33.1 | 17.37 | 42.86 | ||||
11 | PALERMO | 13.37 | 38.12 | COR | 83.24 | 88.69 | 80.32 | 72.74 | 71.18 | 64.26 |
PEL | 26.1 | 19.93 | 29.75 | 29.06 | 20.43 | 35.59 | ||||
12 | AJACCIO_ASP... | 8.76 | 41.92 | COR | 88.37 | 89.99 | 88.49 | 87.31 | 87.50 | 87.01 |
PEL | 19.03 | 15.59 | 22.05 | 25.02 | 23.26 | 27.93 | ||||
13 | PORTO_TORRES | 8.40 | 40.84 | COR | 88.96 | 87.75 | 86.92 | 78.35 | 80.17 | 81.85 |
PEL | 20.87 | 22.45 | 19.02 | 21.32 | 17.39 | 17.28 | ||||
14 | CARLOFORTE | 8.31 | 39.15 | COR | 85.60 | 88.69 | 88.87 | 86.75 | 87.61 | 88.05 |
PEL | 19.19 | 16.24 | 21.05 | 21.63 | 19.79 | 20.14 | ||||
15 | CAGLIARI | 9.11 | 39.21 | COR | 84.98 | 85.70 | 85.26 | 72.05 | 75.39 | 75.09 |
PEL | 20.14 | 18.06 | 21.37 | 19.04 | 19.56 | 17.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Xu, Y. A New Method of De-Aliasing Large-Scale High-Frequency Barotropic Signals in the Mediterranean Sea. Remote Sens. 2020, 12, 2157. https://doi.org/10.3390/rs12132157
Hu D, Xu Y. A New Method of De-Aliasing Large-Scale High-Frequency Barotropic Signals in the Mediterranean Sea. Remote Sensing. 2020; 12(13):2157. https://doi.org/10.3390/rs12132157
Chicago/Turabian StyleHu, Denghui, and Yongsheng Xu. 2020. "A New Method of De-Aliasing Large-Scale High-Frequency Barotropic Signals in the Mediterranean Sea" Remote Sensing 12, no. 13: 2157. https://doi.org/10.3390/rs12132157
APA StyleHu, D., & Xu, Y. (2020). A New Method of De-Aliasing Large-Scale High-Frequency Barotropic Signals in the Mediterranean Sea. Remote Sensing, 12(13), 2157. https://doi.org/10.3390/rs12132157