Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain)
Abstract
:1. Introduction
2. Location and Features of the Mine Site
3. Methodology
3.1. Temporal Evolution of the Mining Landscape
3.2. Non-Destructive Geophysical Method
3.3. Description of Sampling Methods
3.4. Mineralogical and Geochemical Methods
4. Results and Discussion
4.1. Temporal Evolution of Mining Landscape of La Union
4.2. Structure of the Mine Pond and Riverbed Deposits
4.2.1. Mine Pond
4.2.2. Dry Riverbed
4.3. Mineralogical Characterization
4.4. Geochemical Characterization
4.5. Environmental Concerns
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robles-Arenas, V.M.; Rodríguez, R.; García, C.; Manteca, J.I.; Candela, L. Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environ. Geol. 2006, 51, 47–64. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martínez-Pagán, P.; de Ignacio-San José, C.; Martín-Velázquez, S.; Lillo, J.; Faz, A. Geoenvironmental characterization of riverbeds affected by mine tailings in the Mazarrón district (Spain). J. Geochem. Explor. 2012, 119–120, 6–16. [Google Scholar] [CrossRef]
- Morris, B.; Shang, J.; Howarth, P.; Witherly, K. Application of Remote Sensing and Airborne Geophysics to Mine Tailings Monitoring. In Copper Cliff, Ontario. Symposium on the Application of Geophysics to Engineering and Environmental Problems; Environmental & Engineering Geophysical Society: Denver, CO, USA, 2002. [Google Scholar] [CrossRef]
- Smith, B.D.; McDougal, R.R.; McCafferty, A.E.; Deszcz-Pan, M.; Yager, D.B. Helicopter Electromagnetic and Magnetic Survey of the Upper Animas River Watershed; Application to Abandoned Mine Land Studies. In Proceedings of the 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Colorado Springs, CO, USA, 22–26 February 2004; pp. 140–155. [Google Scholar]
- Booterbaugh, A.P.; Bentley, L.R.; Mendoza, C.A. Geophysical Characterization of an Undrained Dyke Containing an Oil Sands Tailings Pond, Alberta, Canada. J. Environ. Eng. Geoph. 2015, 20, 303–317. [Google Scholar] [CrossRef]
- Haegeman, W.; Van Impe, W.F. Characterization of Disposal Sites from Surface Wave Measurements. J. Environ. Eng. Geophys. 1999, 4, 27–33. [Google Scholar] [CrossRef]
- Lghoul, M.; Teixidó, T.; Peña, J.A.; Hakkou, R.; Kchikach, A.; Guérin, R.; Jaffal, M.; Zouhri, L. Electrical and Seismic Tomography Used to Image the Structure of a Tailings Pond at the Abandoned Kettara Mine, Morocco. Mine Water Environ. 2012, 31, 53–61. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Martínez, J.; Rey, J.; Hidalgo, M.C.; Garrido, J.; Rojas, D. Influence of measurement conditions on the resolution of electrical resistivity imaging: The example of abandoned mining dams in the La Carolina District (Southern Spain). Int. J. Min. Process 2014, 133, 67–72. [Google Scholar] [CrossRef]
- Acosta, J.A.; Martínez-Pagán, P.; Martínez-Martínez, S.; Faz, A.; Zornoza, R.; Carmona, D.M. Assessment of environmental risk of reclaimed mining ponds using geophysics and geochemical techniques. J. Geochem. Explor. 2014, 147, 80–90. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; de Ignacio-San José, C.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Lillo, J. Monitoring study of the mine pond reclamation of Mina Concepción, Iberian Pyrite Belt (Spain). Environ. Earth Sci. 2010, 54, 1275–1284. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Martín-Velázquez, S.; Gómez-Ortiz, D.; de Ignacio-San José, C.; Lillo, J. A geophysical and geochemical characterization of sulphide mine ponds at the Iberian Pyrite Belt (Spain). Water Air Soil Pollut. 2011, 217, 287–405. [Google Scholar] [CrossRef] [Green Version]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martínez-Pagán, P.; Martín-Velázquez, S.; Esbrí, J.M.; de Ignacio-San José, C.; Sánchez-García, M.J.; Montoya-Montes, I.; Martín-González, F. Abandoned mine tailings in cultural itineraries: Don Quijote Route (Spain). Eng. Geol. 2015, 197, 82–93. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; de Ignacio-San José, C.; Lillo, J.; Faz, A. Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena–La Union). Eng. Geol. 2018, 232, 135–146. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S. Geoenvironmental Characterization of Sulfide Mine Tailings. In Applied Geochemistry with Case Studies on Geological Formations, Exploration Techniques and Environmental Issues; Mazadiego, F.L., Barrio-Parra, F., Izquierdo-Díaz, M., Eds.; IntechOpen: London, UK, 2020; pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- Montoya-Montes, I.; Cano-Bermejo, I.; Sánchez-García, M.J.; de Ignacio-San José, C.; Martín-Velázquez, S.; Gómez-Ortiz, D.; Martín-Crespo, T.; Martín-González, F. Formación de cuerpos dunares a partir de lodos mineros: Mina de San Quintín (Ciudad Real, España). Geotemas 2012, 13, 1487–1490. [Google Scholar]
- Martín Duque, J.F.; Zapico, I.; Oyarzun, R.; López García, J.A.; Cubas, P. A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: New insights and environmental implications from SE Spain. Geomorphology 2015, 239, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Villar, J.B.; Egea, P.; Fernández, J.C. La Minería Murciana Contemporánea (1930–1985); IGME: Madrid, Spain, 1991; 256p. [Google Scholar]
- IGME. Inventario Nacional de Depósitos de Lodos; Published database; IGME (Instituto Geológico y Minero de España): Madrid, Spain, 2002. [Google Scholar]
- López García, J.A. Estudio Mineralógico, Textural y Geoquímico de Las Zonas de Oxidación de Los Yacimientos de Fe-Pb y Zn de la Sierra de Cartagena (Murcia). Ph.D. Dissertation, Universidad Complutense, Madrid, Spain, 1985. [Google Scholar]
- Sanmartí, L.; Gaya, A.; Molina, C.; Amores, S.; Villanovade-Benavent, C.; Torró, L.; Melgarejo, J.C.; Manteca, J.I. The mineral association in the Emilia and Brunita Pb-Zn-Ag-(Sn) deposits, La Unión, Murcia (Spain). In Proceedings of the 2th SGA Biennial Meeting, Uppsala, Sweden, 12–15 August 2013. [Google Scholar]
- Martín-Rosales, W.; Pulido-Bosch, A.; Vallejos, Á.; Gisbert, J.; Andreu, J.M.; Sánchez-Martos, F. Hydrological implications of desertification in southeastern Spain. Hydrolog. Sci. J. 2007, 52, 1146–1161. [Google Scholar] [CrossRef] [Green Version]
- Robles-Arenas, V.M.; Candela, L. Hydrogeological conceptual model characterisation of an abandoned mine site in semiarid climate. The Sierra de Cartagena–La Unión (SE Spain). Geol. Acta 2010, 8, 235–248. [Google Scholar]
- SIAM. Sistema de Información Agraria de Murcia; SIAM: Murcia, Spain, 2017; Available online: http://siam.imida.es (accessed on 28 September 2017).
- Mouzo Pagán, R. Crónicas Mineras de Rogelio Mouzo Pagán. 2012. Available online: http://cronicasmineras.blogspot.com.es/2012/10/inundaciones-en-la-sierra-minera-de.html (accessed on 14 April 2020).
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration; Blackwell Science: Oxford, UK, 2002; 272p. [Google Scholar]
- Revil, A.; Karaoulis, M.; Johnson, T.; Kemna, A. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol. J. 2012, 20, 617–658. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2011; 710p. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E.; Keys, D.A. Applied Geophysics; University Press: Cambridge, UK, 1990; 770p. [Google Scholar]
- Janik, M.; Krummel, H. Geoelectrical methods: 2D measurements. In Groundwater Geophysics: A Tool for Hydrogeology; Kirsch, R., Ed.; Springer: Heidelberg, Germany, 2009; pp. 109–117. [Google Scholar]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion method in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Buselli, G.; Hwang, H.S.; Lu, K. Minesite groundwater contamination mapping. Explor. Geophys. 1998, 29, 296–300. [Google Scholar] [CrossRef]
- Campbell, D.L.; Fitterman, D.V. Geoelectrical methods for investigating mine dumps. In Proceedings of the Fifth International Conference on Acid Rock Drainage (ICARD2000), Denver, CO, USA, 21–24 May 2000; Society for Mining, Metallurgy, and Exploration, Inc.: Englewood, CO, USA, 2000; pp. 1513–1523. [Google Scholar]
- Yuval, D.; Oldenburg, W. DC resistivity and IP methods in acid mine drainage problems: Results from the Copper Cliff mine tailings impoundments. J. Appl. Geophys. 1996, 34, 187–198. [Google Scholar] [CrossRef]
- Niederleithinger, E.; Kruschwitz, S. Multi-channel Spectral Induced Polarization (SIP) measurements on tailings dams. In Near Surface Meeting; EAGE: Palermo, Italy, 2005. [Google Scholar]
- Martínez-Pagán, P.; Faz, A.; Aracil, E.; Arocena, J.M. Electrical resistivity imaging revealed the spatial properties of mine tailings ponds in the Sierra Minera of Southeast Spain. J. Eng. Environ. Geophys. 2009, 14, 63–76. [Google Scholar] [CrossRef]
- Gómez-Ortiz, D.; Martín-Velázquez, S.; Martín-Crespo, T.; De Ignacio-San José, C.; Lillo-Ramos, J. Application of electrical resistivity tomography to the environmental characterization of abandoned massive sulphide mine ponds (Iberian Pyrite Belt, SW Spain). Near. Surf. Geophys. 2010, 8, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Hidalgo, M.C.; Rey, J.; Garrido, J.; Kohfahl, C.; Benavente, J.; Rojas, D. A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district, Spain. J. Geochem. Explor. 2016, 162, 62–71. [Google Scholar]
- Cortada, U.; Martínez, J.; Rey, J.; Hidalgo, M.C.; Sandoval, S. Assessment of tailings pond seals using geophysical and hydrochemical techniques. Eng. Geol. 2017, 227, 59–70. [Google Scholar] [CrossRef]
- US EPA. Clean Water Act; Section 503; No. 32; Environmental Protection Agency: Washington, DC, USA, 1993; Volume 58.
- IGN. Topographic Map of Cartagena, 977, 1:50.000, 1st ed.; IGN: Madrid, Spain, 1945. [Google Scholar]
- IGN. Topographic Map of Cartagena, 977, 1:50.000, 2nd ed.; IGN: Madrid, Spain, 2018. [Google Scholar]
- Conesa-Alcaraz, H.; Jiménez-Cárceles, F.J.; María-Cervantes, A.; González-Alcaraz, M.N.; Egea-Nicolás, C.; Álvarez-Roger, J. Heavy metal contamination caused by mining activities in the Mar Menor lagoon (SE Spain). In Heavy Metal Sediments; Lucía, H.S., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 115–134. [Google Scholar]
- Gómez-Ortiz, D.; Martín-Crespo, T.; Esbrí, J.M. Geoenvironmental characterization of the San Quintín mine tailings, Ciudad Real (Spain). DYNA 2010, 161, 131–140. [Google Scholar]
- Oyarzun, R.; Lillo, J.; López-García, J.A.; Esbrí, J.M.; Cubas, P.; Llanos, W.; Higueras, P. The Mazarrón Pb–(Ag)–Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: Geochemical data from mine wastes, soils, and stream sediments. J. Geochem. Explor. 2011, 109, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Martínez-Martínez, S.; Acosta, J.A.; Faz Cano, A.; Carmona, D.M.; Zornoza, R.; Cerca, C. Assessment of the lead and zinc contents in natural soils and tailings ponds from the Cartagena–La Unión mining district, SE Spain. J. Geochem. Explor. 2013, 124, 166–175. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente. Rosas de Viento (1971–2000); CD-Rom: Madrid, Spain, 2005. [Google Scholar]
- Marín-Guirao, L.; Cesar, A.; Marín, A.; Vita, R. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain): Metal distribution, toxicity, bioaccumulation and benthic community structure. Cienc. Mar. 2005, 31, 413–428. [Google Scholar]
- Dassenakis, M.; García, G.; Diamantopoulou, E.; Girona, J.D.; García-Marin, E.M.; Filippi, G.; Fioraki, V. The impact of mining activities on the hypersaline Mar Menor lagoon. Desalin. Water Treat. 2010, 13, 282–289. [Google Scholar] [CrossRef]
- Erena, M.; Domínguez, J.A.; Aguado-Giménez, F.; Soria, J.; García-Galiano, S. Monitoring coastal lagoon water quality through remote sensing: The Mar Menor as a case study. Water-Sui 2019, 11, 1468. [Google Scholar] [CrossRef] [Green Version]
Sample | Depth (m) | Qtz | Ill-kn | Chl | Gre | Py | Sp | Gn | Ang | St | Ja | Sd | Gp | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAT-1 | Tailings | 0 | 30 | 10 | 5 | 1–5 | 10 | 10 | 5 | 5 | 5 | 5 | 15 | |
MAT-2 | 0.5 | 30 | 10 | 10 | 5 | 10 | 5 | 5 | 5 | 5 | 15 | |||
MAT-3 | 1 | 30 | 10 | 1–5 | 5 | 5 | 5 | 5 | 5 | 15 | 5 | 15 | ||
MAT-4 | 1.5 | 25 | 5 | 5 | 10 | 5–10 | 5 | 5 | 15 | 5 | 15 | |||
MAT-5 | 2 | 25 | 5 | 5–10 | 5 | 5–10 | 1–5 | 5 | 15 | 5 | 15 | |||
MAT-6 | T + S | 2.5 | 40 | 15 | 5 | 10 | 5 | 5 | 5–10 | 10 | 5 | |||
MAT-7 | 3 | 45 | 10 | 5 | 1–5 | 5 | 5 | 5 | 10 | 10 | ||||
MAT-8 | 3.5 | 45 | 10 | 5 | 1–5 | 5 | 1–5 | 10 | 15 | |||||
MAT-9 | Riverbed Sediments | 4 | 50 | 20 | 5 | 5 | 5 | 10 | 5 | |||||
MAT-10 | 4.5 | 55 | 20 | 1–5 | 5 | 5 | 10 | |||||||
MAT-11 | 5 | 60 | 20 | 5 | 1–5 | 10 | 5 | |||||||
MAT-12 | 5.5 | 55 | 20 | 5 | 5 | 10 | 5 | |||||||
MAT-13 | 6 | 60 | 25 | 1–5 | 5 | 5 | 5 | |||||||
MAT-14 | 6.5 | 55 | 25 | 1–5 | 1–5 | 10 | 5 | |||||||
MAT-15 | 7 | 60 | 35 | 1–5 | 5 | |||||||||
MAT-16 | 7.5 | 60 | 20 | 10 | 10 | |||||||||
MAT-17 | R | 8 | 65 | 30 | 5 |
Sample | Depth | Ag | As | Cd | Cr | Cu | Fe2O3 Total | Ni | Pb | S | Sb | Sn | Zn | pH | EC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (µg/g) | (wt%) | (µg/g) | (µg/g) | (wt%) | (µg/g) | (µg/g) | (µg/g) | (mS/cm) | |||
MAT-1 | Tailings | 0 | 33.1 | 452 | 19.1 | 40 | 350 | 39.17 | 28 | 8130 | 3.11 | 87.2 | 75 | 11220 | 4.42 | 3.20 |
MAT-2 | 0.5 | 4.4 | 456 | 14.1 | 30 | 201 | 36.04 | 24 | 4130 | 4.10 | 59 | 31 | 6930 | 5.30 | 4.61 | |
MAT-3 | 1 | 5.7 | 262 | 11 | b.d. | 40 | 45.26 | 15 | 5320 | 1.82 | 130 | 38 | 7230 | 4.94 | 3.44 | |
MAT-4 | 1.5 | 67.7 | 1620 | 306 | b.d. | 730 | 40.75 | 44 | 8640 | 16.80 | 211.5 | 122 | 12310 | 4.88 | 8.78 | |
MAT-5 | 2 | 37 | 1270 | 9.3 | 40 | 215 | 41.68 | 14 | 7270 | 3.43 | 236 | 46 | 6350 | 2.50 | 5.19 | |
MAT-6 | T + S | 2.5 | 2 | 27 | 5.5 | 90 | 34 | 12.88 | 47 | 7950 | 0.46 | 17.4 | 8 | 3010 | 3.83 | 1.55 |
MAT-7 | 3 | 3.8 | 61 | 38 | 60 | 76 | 20.47 | 46 | 7640 | 2.94 | 42.5 | 18 | 12010 | 4.51 | 3.38 | |
MAT-8 | 3.5 | 4.3 | 26 | 133 | 60 | 69 | 9.11 | 86 | 2340 | 3.38 | 18.6 | 9 | 9870 | 6.38 | 2.53 | |
MAT-9 | Riverbed Sediments | 4 | 1.7 | 42 | 8.4 | 70 | 169 | 15.38 | 50 | 3640 | 0.45 | 21 | 29 | 4680 | 6.08 | 1.85 |
MAT-10 | 4.5 | 1.7 | 48 | 3.6 | 70 | 110 | 11.80 | 42 | 2720 | 0.15 | 25 | 28 | 1140 | 6.28 | 0.63 | |
MAT-11 | 5 | 2.1 | 38 | 3.2 | 60 | 89 | 9.78 | 32 | 2450 | 0.16 | 19.7 | 21 | 897 | 6.51 | 0.58 | |
MAT-12 | 5.5 | 1.6 | 51 | 10.5 | 50 | 120 | 27.37 | 41 | 5870 | 0.34 | 39.7 | 19 | 3890 | 6.58 | 1.23 | |
MAT-13 | 6 | 1.9 | 92 | 6.9 | 60 | 126 | 22.82 | 42 | 5960 | 0.23 | 44.8 | 20 | 1980 | 6.20 | 1.33 | |
MAT-14 | 6.5 | 1.2 | 79 | 9.9 | 80 | 87 | 14.54 | 43 | 4210 | 0.17 | 32.6 | 44 | 1240 | 5.45 | 0.81 | |
MAT-15 | 7 | 1.2 | 51 | 11.9 | 80 | 98 | 13.39 | 47 | 3460 | 0.14 | 21.5 | 234 | 1050 | 4.55 | 0.93 | |
MAT-16 | 7.5 | 14.6 | 147 | 9.3 | 50 | 298 | 30.77 | 20 | 6770 | 0.27 | 37.5 | 1190 | 994 | 7.74 | 0.26 | |
MAT-17 | R | 8 | 0.8 | b.d. | 3.8 | 80 | 1 | 9.08 | 40 | 888 | 0.02 | 8.3 | 6 | 764 | 7.75 | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; de Ignacio-San José, C.; Lillo, J.; Faz, Á. Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain). Remote Sens. 2020, 12, 2042. https://doi.org/10.3390/rs12122042
Martín-Crespo T, Gómez-Ortiz D, Martín-Velázquez S, Martínez-Pagán P, de Ignacio-San José C, Lillo J, Faz Á. Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain). Remote Sensing. 2020; 12(12):2042. https://doi.org/10.3390/rs12122042
Chicago/Turabian StyleMartín-Crespo, Tomás, David Gómez-Ortiz, Silvia Martín-Velázquez, Pedro Martínez-Pagán, Cristina de Ignacio-San José, Javier Lillo, and Ángel Faz. 2020. "Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain)" Remote Sensing 12, no. 12: 2042. https://doi.org/10.3390/rs12122042
APA StyleMartín-Crespo, T., Gómez-Ortiz, D., Martín-Velázquez, S., Martínez-Pagán, P., de Ignacio-San José, C., Lillo, J., & Faz, Á. (2020). Abandoned Mine Tailings Affecting Riverbed Sediments in the Cartagena–La Union District, Mediterranean Coastal Area (Spain). Remote Sensing, 12(12), 2042. https://doi.org/10.3390/rs12122042