Next Article in Journal
Analyzing Urban Agriculture’s Contribution to a Southern City’s Resilience through Land Cover Mapping: The Case of Antananarivo, Capital of Madagascar
Previous Article in Journal
Effect of Organic Matter Content on the Spectral Signature of Iron Oxides across the VIS–NIR Spectral Region in Artificial Mixtures: An Example from a Red Soil from Israel
Open AccessArticle

The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations

1
Department of Geophysics, GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany
2
Institute of Volcanology and Seismology, FED RAS, 683006 Petropavlovsk, Russia
3
Department of Geoscience, Shimane University, Matsue 690-8504, Japan
*
Author to whom correspondence should be addressed.
Remote Sens. 2020, 12(12), 1961; https://doi.org/10.3390/rs12121961
Received: 20 May 2020 / Revised: 10 June 2020 / Accepted: 16 June 2020 / Published: 18 June 2020
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Vulcanian explosions are hazardous and are often spontaneous and direct observations are therefore challenging. Ebeko is an active volcano on Paramushir Island, northern Kuril Islands, showing characteristic Vulcanian-type activity. In 2019, we started a comprehensive survey using a combination of field station records and repeated unoccupied aircraft system (UAS) surveys to describe the geomorphological features of the edifice and its evolution during ongoing activity. Seismic data revealed the activity of the volcano and were complemented by monitoring cameras, showing a mean explosion interval of 34 min. Digital terrain data generated from UAS quadcopter photographs allowed for the identification of the dimensions of the craters, a structural architecture and the tephra deposition at cm-scale resolution. The UAS was equipped with a thermal camera, which in combination with the terrain data, allowed it to identify fumaroles, volcano-tectonic structures and vents and generate a catalog of 282 thermal spots. The data provide details on a nested crater complex, aligned NNE-SSW, erupting on the northern rim of the former North Crater. Our catalog of thermal spots also follows a similar alignment on the edifice-scale and is also affected by topography on a local scale. This paper provides rare observations at Ebeko volcano and shows details on its Vulcanian eruption style, highlighting the relevance of structural and morphologic control for the geometry of craters and tephra fallout as well as for structurally controlled geothermal activity. View Full-Text
Keywords: Ebeko volcano; small unoccupied aircraft system (UAS), Vulcanian explosions; air fall deposits; infrared imaging; photogrammetry Ebeko volcano; small unoccupied aircraft system (UAS), Vulcanian explosions; air fall deposits; infrared imaging; photogrammetry
Show Figures

Graphical abstract

MDPI and ACS Style

Walter, T.R.; Belousov, A.; Belousova, M.; Kotenko, T.; Auer, A. The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations. Remote Sens. 2020, 12, 1961.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop