Investigating Lunar Boulders at the Apollo 17 Landing Site Using Photogrammetry and Virtual Reality
Abstract
1. Introduction
2. Materials and Methods
2.1. Context Orbital Imagery
2.2. The Hasselblad Surface Image Data Set
2.3. Structure from Motion Principle and Software Choice
3. Results
3.1. Three-Dimensional Reconstruction of the Station 7 Boulder
3.2. Three-Dimensional Reconstruction of the Station 6 Boulders
3.3. Three-Dimensional Reconstruction of the Station 2 Boulders
3.4. Integration into Virtual Reality of the 3-D Models
3.4.1. Publication of the Models on a Web-Based Platform
3.4.2. Integration into a Game Engine
4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGreevy, M.W. Virtual reality and planetary exploration. In Virtual Reality; Elsevier: Amsterdam, The Netherlands, 1993; pp. 163–197. ISBN 0-12-745045-9. [Google Scholar]
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A.; Isola, I.; Tarquini, S.; Nannipieri, L. Multiview 3D reconstruction in geosciences. Comput. Geosci. 2012, 44, 168–176. [Google Scholar] [CrossRef]
- Arbuées, P.; García-Sellés, D.; Granado, P.; Lopez-Blanco, M.; Muñoz, J. A method for producing photorealistic digital outcrop models. In Proceedings of the 74th EAGE Conference and Exhibition Incorporating EUROPEC, Copenhagen, Denmark, 4–7 June 2012; p. cp-293-00121, Abstract #D029. [Google Scholar]
- Tavani, S.; Granado, P.; Corradetti, A.; Girundo, M.; Iannace, A.; Arbués, P.; Muñoz, J.A.; Mazzoli, S. Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran). Comput. Geosci. 2014, 63, 44–53. [Google Scholar] [CrossRef]
- Ostwald, A.; Hurtado, J. 3D models from structure-from-motion photogrammetry using Mars science laboratory images: Methods and implications. In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017. LPI Contribution No. 1964, id.1787. [Google Scholar]
- Schmitt, H.H.; Petro, N.E.; Wells, R.A.; Robinson, M.S.; Weisss, B.P.; Mercer, C.M. Revisiting the field geology of Taurus-Littrow. Icarus 2017, 298, 2–33. [Google Scholar] [CrossRef]
- Civet, F.; Le Mouélic, S.; Le Menn, E.; Beaunay, S. Using Virtual Reality for Outreach Purposes in Planetology. In Proceedings of the American Astronomical Society, DPS meeting #48, Washington, DC, USA, 16–21 October 2016. id.419.10. [Google Scholar]
- Le Mouélic, S.; L’Haridon, J.; Civet, F.; Mangold, N.; Triantafyllou, A.; Massé, M.; Le Menn, E.; Beaunay, S. Using virtual reality to investigate geological outcrops on planetary surfaces. In Proceedings of the 20th EGU General Assembly, EGU2018, Conference held, Vienna, Austria, 4–13 April 2018; p. 13366. [Google Scholar]
- Triantafyllou, A.; Watlet, A.; Le Mouélic, S.; Camelbeeck, T.; Civet, F.; Kaufmann, O.; Quinif, Y.; Vandycke, S. 3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium). J. Struct. Geol. 2019, 120, 55–66. [Google Scholar] [CrossRef]
- Caravaca, G.; Le Mouélic, S.; Mangold, N.; L’Haridon, J.; Le Deit, L.; Massé, M. 3D digital outcrop model reconstruction of the Kimberley outcrop (Gale crater, Mars) and its integration into Virtual Reality for simulated geological analysis. Planet. Space Sci. 2020, 182, 104808. [Google Scholar] [CrossRef]
- Mat, R.C.; Shariff, A.R.M.; Zulkifli, A.N.; Rahim, M.S.M.; Mahayudin, M.H. Using game engine for 3D terrain visualisation of GIS data: A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 20, p. 012037. [Google Scholar]
- Nesbit, P.R.; Boulding, A.D.; Hugenholtz, C.H.; Durkin, P.R.; Hubbard, S.M. Visualization and Sharing of 3D Digital Outcrop Models to Promote Open Science. GSA Today 2020, 30, 4–10. [Google Scholar] [CrossRef]
- Haase, I.; Wählisch, M.; Gläser, P.; Oberst, J.; Robinson, M. Coordinates and Maps of the Apollo 17 Landing Site. Earth Space Sci. 2019, 6, 59–95. [Google Scholar] [CrossRef]
- Wolfe, E.W.; Bailey, N.G.; Lucchitta, B.K.; Muehlberger, W.R.; Scott, D.H.; Sutton, R.L.; Wilshire, H.G. Geologic investigation of the Taurus-Littrow Valley: Apollo 17 landing site. U.S. Geol. Surv. Prof. Pap. 1981, 1080, 225–280. [Google Scholar]
- Haruyama, J.; Matsunaga, T.; Ohtake, M.; Morota, T.; Honda, C.; Yokota, Y.; Torii, M.; Ogawa, Y. LISM Working Group. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 2008, 60, 243–255. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- McEwen, A.S.; Robinson, M.S. Mapping of the Moon by Clementine. Adv. Space Res. 1997, 19, 1523–1533. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Taylor, G.J.; Hawke, B.R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 2000, 105, 20377–20386. [Google Scholar] [CrossRef]
- Kammerer, J.; Zeiss, C. The moon camera and its lenses. Opt. Eng. 1972, 11, 73–78. [Google Scholar] [CrossRef]
- Batson, R.M.; Larson, K.B.; Tyner, R.L. Apollo 17 lunar surface photography, in Geologic Investigation of the Taurus-Littrow Valley: Apollo 17 Landing Site. U.S. Geol. Surv. Prof. Pap. 1981, 1080, 225–280. [Google Scholar]
- Lawrence, S.J.; Robinson, M.S.; Broxton, M.; Stopar, J.D.; Close, W.; Grunsfeld, J.; Ingram, R.; Jefferson, L.; Locke, S.; Mitchell, R.; et al. The Apollo digital image archive: New research and data products. In Proceedings of the NLSI Lunar Science Conference, California, CA, USA, 22–23 July 2008; p. 2066. Available online: https://www.lpi.usra.edu/meetings/nlsc2008/pdf/2066.pdf (accessed on 11 May 2020).
- Borgeson, W.T.; Batson, R.M. Photogrammetric Calibration of Apollo Film Cameras; Usgs Open-File Report N69-N27911; U.S. Geological Survey: Reston, VA, USA, 1969.
- iWitnessPro. 2015. Available online: https://www.photometrix.com.au/iwitness/ (accessed on 11 May 2020).
- Manheim, M.; Wagner, R.; Klem, S.; Robinson, M. Photoscan DEMs from Apollo 15 Hasselblad photographs. In Proceedings of the European Planetary Science Congress, Berlin, Germany, 16–21 September 2018; Volume 12. EPSC2018-996. [Google Scholar]
- Agisoft LLC. Metashape Professional. 2020. Available online: https://www.agisoft.com (accessed on 30 January 2020).
- Meyer, C. Lunar Sample Compendium. In Proceedings of the 41st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; p. 1016, LPI Contribution No. 1533. [Google Scholar]
- Reimold, W.U. Pseudotachylite in impact structures—generation by friction melting and shock brecciation?: A review and discussion. Earth Sci. Rev. 1995, 39, 247–265. [Google Scholar] [CrossRef]
- Schmitt, H.H.; Cernan, E.; Lyndon, B.; Johnson Space Center. Apollo 17: Preliminary Science Report; Scientific and Technical Information Office: Washington, DC, USA, 1973. [Google Scholar]
- Papanastassiou, D.A.; Wasserburg, G.J. Rb-Sr study of a lunar dunite and evidence for early lunar differentiates. In Proceedings of the Lunar and Planetary Science Conference, New York, NY, USA, 17–21 March 1975; pp. 1467–1489. [Google Scholar]
- Ryder, G. Chemical variation and zoning of olivine in lunar dunite 72415: Near-surface accumulation. In Proceedings of the 22nd Lunar and Planetary Science Conference, Houston, TX, USA, 18–22 March 1991; Lunar Planetary Institute: Houston, TX, USA, 1992; pp. 373–380. [Google Scholar]
- Schmitt, H.H. Symplectites in dunite 71415 and troctolite 76535 indicate mantle overturn beneath lunar near-side. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 2339, LPI Contribution No. 1903. [Google Scholar]
- Binet, R.; Grizonnet, M.; Torres, A.; Malapert, J.-C.; Jocteur-Bronzier, F. Lunar Landing Site Localization, Trajectory Inversion, and DTM Update from CHANG′E-3 Descent Images. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019. LPI Contribution No. 2132, id.2433. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Mouélic, S.; Enguehard, P.; Schmitt, H.H.; Caravaca, G.; Seignovert, B.; Mangold, N.; Combe, J.-P.; Civet, F. Investigating Lunar Boulders at the Apollo 17 Landing Site Using Photogrammetry and Virtual Reality. Remote Sens. 2020, 12, 1900. https://doi.org/10.3390/rs12111900
Le Mouélic S, Enguehard P, Schmitt HH, Caravaca G, Seignovert B, Mangold N, Combe J-P, Civet F. Investigating Lunar Boulders at the Apollo 17 Landing Site Using Photogrammetry and Virtual Reality. Remote Sensing. 2020; 12(11):1900. https://doi.org/10.3390/rs12111900
Chicago/Turabian StyleLe Mouélic, Stéphane, Pauline Enguehard, Harrison H. Schmitt, Gwénaël Caravaca, Benoît Seignovert, Nicolas Mangold, Jean-Philippe Combe, and François Civet. 2020. "Investigating Lunar Boulders at the Apollo 17 Landing Site Using Photogrammetry and Virtual Reality" Remote Sensing 12, no. 11: 1900. https://doi.org/10.3390/rs12111900
APA StyleLe Mouélic, S., Enguehard, P., Schmitt, H. H., Caravaca, G., Seignovert, B., Mangold, N., Combe, J.-P., & Civet, F. (2020). Investigating Lunar Boulders at the Apollo 17 Landing Site Using Photogrammetry and Virtual Reality. Remote Sensing, 12(11), 1900. https://doi.org/10.3390/rs12111900