Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Analysis
3. Results:
3.1. Wildfire and Land-Use in the Great Plains
3.2. Ecoregional Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fraterrigo, J.M.; Rusak, J.A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 2008, 11, 756–770. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Sorensen, C.J.; Borbor-Cordova, M.J.; Calvello-Hynes, E.; Diaz, A.; Lemery, J.; Stewart-Ibarra, A.M. Climate variability, vulnerability, and natural disasters: A case study of Zika Virus in Manabi, Ecuador following the 2016 earthquake. GeoHealth 2017, 1, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.C. Natural Disasters, 1st ed.; Routledge: London, UK, 1993; ISBN 978-1-351-42923-8. [Google Scholar]
- IFRC. World Disasters Report 2014-Data. 2014. Available online: http://www.ifrc.org/world-disasters-report-2014/data (accessed on 19 December 2018).
- NOAA. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters; 2018. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 19 December 2018).
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Guha-Sapir, D.; Hargitt, D.; Hoyois, P. Thirty Years of Natural Disasters 1974–2003: The Numbers; Presses Universitaires de Louvain: Louvain-le-Neuve, Belgium, 2004; ISBN 978-2-930344-71-3. [Google Scholar]
- Donovan, V.M.; Wonkka, C.L.; Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 2017, 44, 5986–5993. [Google Scholar] [CrossRef]
- Wildland Fire Executive Council. The National Strategy: The Final Phase in the Development of the National Cohesive Wildland Fire Management Strategy; U.S. Departments of Interior and Agriculture: Washington, DC, USA, 2014.
- Guyette, R.P.; Stambaugh, M.C.; Dey, D.C.; Muzika, R.-M. Predicting fire frequency with chemistry and climate. Ecosystems 2012, 15, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Frost, C.C. Presettlement fire frequency regimes of the United States: A first approximation. In Proceedings of the Fire in Ecosystem Management: Shifting the Paradigm from Suppression to Prescription; Pruden, T.L., Brennan, L.A., Eds.; Tall Timbers Research Station: Talhassee, FL, USA, 1998; Volume 20, pp. 70–81. [Google Scholar]
- Mouillot, F.; Field, C.B. Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Glob. Change Biol. 2005, 11, 398–420. [Google Scholar] [CrossRef]
- Twidwell, D.; Rogers, W.E.; Fuhlendorf, S.D.; Wonkka, C.L.; Engle, D.M.; Weir, J.R.; Kreuter, U.P.; Taylor, C.A. The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Front. Ecol. Environ. 2013, 11, e64–e71. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Walsh, J.R.; Carpenter, S.R.; Zanden, M.J.V. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. USA 2016, 113, 4081–4085. [Google Scholar] [CrossRef] [Green Version]
- National Interagency Fire Center (NIFC) Statistics. Available online: https://www.nifc.gov/fireInfo/fireInfo_statistics.html (accessed on 30 January 2017).
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Dorn, J.V.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [Green Version]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire–climate relationship: Evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- Coates, P.S.; Ricca, M.A.; Prochazka, B.G.; Brooks, M.L.; Doherty, K.E.; Kroger, T.; Blomberg, E.J.; Hagen, C.A.; Casazza, M.L. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems. Proc. Natl. Acad. Sci. USA 2016, 113, 12745–12750. [Google Scholar] [CrossRef] [Green Version]
- Pilliod, D.S.; Welty, J.L.; Arkle, R.S. Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Ecol. Evol. 2017, 7, 8126–8151. [Google Scholar] [CrossRef]
- D’Antonio, C.M.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Johnson, N.C.; Wedin, D.A. Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecol. Appl. 1997, 7, 171–182. [Google Scholar] [CrossRef]
- Rossiter, N.A.; Setterfield, S.A.; Douglas, M.M.; Hutley, L.B. Testing the grass-fire cycle: Alien grass invasion in the tropical savannas of northern Australia. Divers. Distrib. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Setterfield, S.A.; Rossiter-Rachor, N.A.; Hutley, L.B.; Douglas, M.M.; Williams, R.J. Turning up the heat: The impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 2010, 16, 854–861. [Google Scholar] [CrossRef]
- Butsic, V.; Kelly, M.; Moritz, M. Land use and wildfire: A review of local interactions and teleconnections. Land 2015, 4, 140–156. [Google Scholar] [CrossRef]
- Wells, P.V. Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains Region. Science 1965, 148, 246–249. [Google Scholar] [CrossRef]
- Briggs, J.M.; Knapp, A.K.; Blair, J.M.; Heisler, J.L.; Hoch, G.A.; Lett, M.S.; McCarron, J.K. An ecosystem in transition: Causes and consequences of the conversion of mesic grassland to shrubland. BioScience 2005, 55, 243–254. [Google Scholar] [CrossRef]
- Van Auken, O.W. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manag. 2009, 90, 2931–2942. [Google Scholar] [CrossRef]
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). US Level III Ecoregions without State Boundaries; EPA GIS Agency Central Support: Research Triangle Park, NC, USA, 2012. [Google Scholar]
- Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- MTBS Project (USDA Forest Service/U.S. Geological Survey). MTBS Data Access: National Geospatial Data; MTBS Project (USDA Forest Service/U.S. Geological Survey): Washington, DC, USA, 2017. [Google Scholar]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Sparks, A.M.; Boschetti, L.; Smith, A.M.; Tinkham, W.T.; Lannom, K.O.; Newingham, B.A. An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States. Int. J. Wildland Fire 2015, 24, 70–78. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Barbero, R.; Wolf, J.W.; Holden, Z.A. Tracking Interannual streamflow variability with drought indices in the U.S. Pacific Northwest. J. Hydrometeorol. 2014, 15, 1900–1912. [Google Scholar] [CrossRef]
- Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [Google Scholar]
- Gagnon, P.R.; Passmore, H.A.; Platt, W.J.; Myers, J.A.; Paine, C.E.T.; Harms, K.E. Does pyrogenicity protect burning plants? Ecology 2010, 91, 3481–3486. [Google Scholar] [CrossRef]
- Hoagland, B.; Butler, I.; Johnson, F.; Glenn, S. The Cross Timbers. In Savannas, Barrens, and Rock Outcrop Plant Communities of North America; Anderson, R.C., Fralish, J.S., Baskin, J.M., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 231–245. [Google Scholar]
- Ratajczak, Z.; Nippert, J.B.; Hartman, J.C.; Ocheltree, T.W. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere 2011, 2, 1–14. [Google Scholar] [CrossRef]
- Andrews, P.L.; Rothermel, R.C. Charts for Interpreting Wildland Fire Behavior Characteristics; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982. [Google Scholar]
- Rothermel, R.C. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1991. [Google Scholar]
- Payne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Wilson, A.A.G. Width of firebreak that is necessary to stop grass fires: Some field experiments. Can. J. For. Res. 1988, 18, 682–687. [Google Scholar] [CrossRef]
- Donovan, V.M.; Burnett, J.L.; Bielski, C.H.; Birgé, H.E.; Bevans, R.; Twidwell, D.; Allen, C.R. Social–ecological landscape patterns predict woody encroachment from native tree plantings in a temperate grassland. Ecol. Evol. 2018, 8, 9624–9632. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Nippert, J.B.; Collins, S.L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 2012, 93, 697–703. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [Green Version]
- Scholtz, R.; Polo, J.A.; Tanner, E.P.; Fuhlendorf, S.D. Grassland fragmentation and its influence on woody plant cover in the southern Great Plains, USA. Landsc. Ecol. 2018. [Google Scholar] [CrossRef]
- Coppedge, B.R.; Engle, D.M.; Fuhlendorf, S.D.; Masters, R.E.; Gregory, M.S. Urban sprawl and juniper encroachment effects on abundance of wintering passerines in Oklahoma. In Avian Ecology and Conservation in an Urbanizing World; Marzluff, J.M., Bowman, R., Donnelly, R., Eds.; Springer: Boston, MA, USA, 2001; pp. 225–242. ISBN 978-1-4613-5600-4. [Google Scholar]
- Cochrane, M.A. Fire science for rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef]
- Eva, H.; Lambin, E.F. Fires and land-cover change in the tropics: A remote sensing analysis at the landscape scale. J. Biogeogr. 2000, 27, 765–776. [Google Scholar] [CrossRef]
- Cochrane, M.A. Spreading like Wildfire: Tropical Forest Fires in Latin America and the Caribbean; United Nations Environment Programme (UNEP): Mexico City, Mexico, 2002. [Google Scholar]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
- Duncan, B.W.; Schmalzer, P.A. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landsc. Ecol. 2004, 19, 153–165. [Google Scholar] [CrossRef]
- McGranahan, D.A.; Engle, D.M.; Fuhlendorf, S.D.; Miller, J.R.; Debinski, D.M. An invasive cool-season grass complicates prescribed fire management in a native warm-season grassland. Nat. Areas J. 2012, 32, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Huang, M.; Yang, B.; Berg, L.K. A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeorol. 2013, 14, 700–721. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; Werf, G.R.; van der Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
- Kerby, J.D.; Fuhlendorf, S.D.; Engle, D.M. Landscape heterogeneity and fire behavior: Scale-dependent feedback between fire and grazing processes. Landsc. Ecol. 2007, 22, 507–516. [Google Scholar] [CrossRef]
- Finney, M.A.; Seli, R.C.; McHugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J.K. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire 2007, 16, 712. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.P.; Yocom, L.L.; Belmont, P. Beyond the 1984 Perspective: Narrow focus on modern wildfire trends underestimates future risks to water security. Earths Future 2018, 6, 1492–1497. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Morandini, F.; Silvani, X.; Rossi, L.; Santoni, P.-A.; Simeoni, A.; Balbi, J.-H.; Louis Rossi, J.; Marcelli, T. Fire spread experiment across Mediterranean shrub: Influence of wind on flame front properties. Fire Saf. J. 2006, 41, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Viegas, D.X. Slope and wind effects on fire propagation. Int. J. Wildland Fire 2004, 13, 143–156. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, M.; Butman, D.; Hawbaker, T.; Li, Z.; Lui, J.; Lui, S.; McDonald, C.; Reker, R.; Sayler, K.; Sleeter, B.; et al. Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in the Great Plains Region of the United States; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Wehner, M.; Easterling, D.R.; Lawrimore, J.H.; Heim, R.R.; Vose, R.S.; Santer, B.D. Projections of future drought in the continental United States and Mexico. J. Hydrometeorol. 2011, 12, 1359–1377. [Google Scholar] [CrossRef]
- Weltzin, J.F.; McPherson, G.R. Changing Precipitation Regimes and Terrestrial Ecosystems: A North American Perspective; University of Arizona Press: Tucson, AZ, USA, 2003; ISBN 0-8165-2247-2. [Google Scholar]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.-P.; Harnik, N.; Leetmaa, A.; Lau, N.-C. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef]
Ecoregion | Ecoregion Area (ha) | Number of Wildfires a | Total Area Burned (ha) | Average PDSI at wildfire initiation b | Average Population Density per km2 in 2010c |
---|---|---|---|---|---|
Great Plains | 2.23 × 108 | 1870 | 5.04 × 106 | −1.46 ± 2.27 SD | 16 ± 133 SD |
Central Great Plains | 2.75 × 107 | 180 | 3.17 × 105 | −1.98 ± 2.31 SD | 12 ± 104 SD |
Central Irregular Plains | 1.14 × 107 | 19 | 1.31 × 104 | −2.35 ± 2.20 SD | 30 ± 158 SD |
Cross Timbers | 8.81 × 106 | 234 | 4.39 × 105 | −2.78 ± 1.93 SD | 35 ± 167 SD |
Edwards Plateau | 7.49 × 106 | 102 | 3.84 × 105 | −1.47 ± 2.24 SD | 12 ± 90 SD |
Flint Hills | 2.79 × 106 | 49 | 1.13 × 105 | −1.65 ± 2.39 SD | 9 ± 87 SD |
High Plains | 2.88 × 107 | 299 | 7.92 × 105 | −1.60 ± 1.76 SD | 15 ± 150 SD |
Lake Agassiz Plain | 4.51 × 106 | 60 | 2.87 × 104 | −1.17 ± 2.16 SD | 8 ± 87 SD |
Nebraska Sandhills | 5.91 × 106 | 41 | 8.17 × 104 | −0.92 ± 2.56 SD | 1 ± 11 SD |
Northern Glaciated Plains | 1.35 × 107 | 5 | 5.10+3 | −2.01 ± 1.43 | 4 ± 52 SD |
Northwestern Glaciated Plains | 1.74 × 107 | 63 | 8.62 × 104 | −0.32 ± 1.15 SD | 2 ± 35 SD |
Northwestern Great Plains | 3.58 × 107 | 414 | 1.39 × 106 | −0.78 ± 2.34 SD | 2 ± 35 SD |
Southern Texas Plains | 5.34 × 106 | 12 | 3.11 × 104 | 0.71 ± 2.26 SD | 10 ± 111 SD |
Southwestern Tablelands | 1.99 × 107 | 350 | 1.13 × 106 | −1.73 ± 1.99 SD | 5 ± 72 SD |
Western Gulf Coastal Plain | 7.54 × 106 | 163 | 2.26 × 105 | −0.98 ± 2.53 SD | 90 ± 146 SD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donovan, V.M.; Wonkka, C.L.; Wedin, D.A.; Twidwell, D. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sens. 2020, 12, 1869. https://doi.org/10.3390/rs12111869
Donovan VM, Wonkka CL, Wedin DA, Twidwell D. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing. 2020; 12(11):1869. https://doi.org/10.3390/rs12111869
Chicago/Turabian StyleDonovan, Victoria M., Carissa L. Wonkka, David A. Wedin, and Dirac Twidwell. 2020. "Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains" Remote Sensing 12, no. 11: 1869. https://doi.org/10.3390/rs12111869
APA StyleDonovan, V. M., Wonkka, C. L., Wedin, D. A., & Twidwell, D. (2020). Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing, 12(11), 1869. https://doi.org/10.3390/rs12111869