Time Delay Evaluation on the Water-Leaving Irradiance Retrieved from Empirical Models and Satellite Imagery
Abstract
:1. Introduction
2. Methods
2.1. Lake Chapala
2.2. Ground-Based Data
2.2.1. Information Sources
2.2.2. Statistical Tests
2.2.3. Geostatistical Evaluation
2.3. Satellite Imagery
2.3.1. Turbidity and NIR Reflectance Relationships
2.3.2. Surface Reflectance
2.3.3. Spectral Improvement
3. Results
3.1. TSS-Turbidity Correlations
3.1.1. Factor Assessment
3.1.2. Geostatistical Analysis
3.2. Analysis of the Ground-Based Measurements
Spatial and Seasonal Behavior
3.3. Spectral Analysis
3.3.1. Sun-Glint Effect Removal
3.3.2. Reflectance Retrieved from the Turbid Water
3.4. Empirical Models for Turbidity
3.4.1. Calibration
3.4.2. Validation
4. Discussion
4.1. The Principal Turbidity Sources
4.2. Advantages and Challenges
4.3. Time Delays Implications
4.4. Model Interpretations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chapman, D.V. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; University Press: Cambridge, UK, 1996. [Google Scholar]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobble, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234. [Google Scholar] [CrossRef]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 2004, 115, 329–341. [Google Scholar] [CrossRef]
- Oertli, B.; Biggs, J.; Céréghino, R.; Grillas, P.; Joly, P.; Lachavanne, J.B. Conservation and monitoring of pond biodiversity: Introduction. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 535–540. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2001; p. 1006. ISBN -13: 978-0-12-744760-5. [Google Scholar]
- Bastin, J.F.; Clark, E.; Elliott, T.; Hart, S.; Van den Hoogen, J.; Hordijk, I.; Ma, H.; Majumder, S.; Manoli, G.; Maschler, J.; et al. Understanding climate change from a global analysis of city analogues. PLoS ONE 2019, 14, e0217592. [Google Scholar]
- Zaneveld, J.R.V. A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties. J. Geophys. Res. Ocean 1995, 100, 13135–13142. [Google Scholar] [CrossRef] [Green Version]
- Dekker, A.G.; Hoogenboom, H.J.; Goddijn, L.M.; Malthus, T.J.M. The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sens. Rev. 1997, 15, 59–74. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 2001, 268, 197–214. [Google Scholar] [CrossRef]
- Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M. Remote sensing the dynamics of suspended particles in the Mackenzie river plume (Canadian Arctic Ocean). Biogeosci. Discuss. 2012, 9, 5205–5248. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Lathrop, R.G.; Lillesand, T.M. Monitoring water quality and river plume transport in Green Bay, Lake Michigan with SPOT-1 imagery. Photogramm. Eng. Remote Sens. 1989, 55, 349–354. [Google Scholar]
- Harrington, J.A., Jr.; Schiebe, F.R.; Nix, J.F. Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data. Remote Sens. Environ. 1992, 39, 15–27. [Google Scholar] [CrossRef]
- Härmä, P.; Vepsäläinen, J.; Hannonen, T.; Pyhälahti, T.; Kämäri, J.; Kallio, K.; Eloheimo, K.; Koponen, S. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Sci. Total Environ. 2001, 268, 107–121. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.M.; Pyhälahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Bauer, M.E. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Res. 2002, 36, 4330–4340. [Google Scholar] [CrossRef]
- Vincent, R.K.; Qin, X.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens. Environ. 2004, 89, 381–392. [Google Scholar] [CrossRef]
- Tyler, A.N.; Svab, E.; Preston, T.; Présing, M.; Kovács, W.A. Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. Int. J. Remote Sens. 2006, 27, 1521–1537. [Google Scholar] [CrossRef]
- Hicks, B.J.; Stichbury, G.A.; Brabyn, L.K.; Allan, M.G.; Ashraf, S. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ. Monit. Assess. 2013, 185, 7245–7261. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.C.; Frazier, A.E. Automated method for monitoring water quality using Landsat Imagery. Water 2016, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.C.F.; Novo, E.M.L.M.; Martinez, J.M. Remote sensing of the water properties of the Amazon floodplain lakes: The time delay effects between in-situ and satellite data acquisition on model accuracy. In International Symposium on Remote Sensing of Environment: Sustaining the Millennium Development Goals; International Center for Remote Sensing of Environment (ICRSE): Tucson, AZ, USA, 2009; Volume 33. [Google Scholar]
- Song, K.; Wang, Z.; Blackwell, J.; Zhang, B.; Li, F.; Zhang, Y.; Jiang, G. Water quality monitoring using Landsat Themate Mapper data with empirical algorithms in Chagan Lake, China. J. Appl. Remote Sens. 2011, 5, 053506. [Google Scholar] [CrossRef]
- Sheng, Y.P.; Lick, W. The transport and resuspension of sediments in a shallow lake. J. Geophys. Res. 1979, 84, 1809–1826. [Google Scholar] [CrossRef]
- Bloesch, J. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshw. Res. 1995, 46, 295–304. [Google Scholar] [CrossRef]
- Chung, E.G.; Bombardelli, F.A.; Schladow, S.G. Sediment resuspension in a shallow lake. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- United State Environmental Protection Agency (USEPA). Monitoring Water Quality, Volunteer Stream Monitoring: A Methods Manual; Office of Water 841-B-97-003; United State Environmental Protection Agency (USEPA): Washington, DC, USA, 1997; 214p.
- Secretary of Health in Mexico (Secretaría de Salud). Diario Oficial de la Federación. NOM-127-SSA1-1994. 1995. Available online: http://www.salud.gob.mx/unidades/cdi/nom/127ssa14.html (accessed on 25 December 2019).
- World Health Organization (WHO). Guidelines for Drinking-Water Quality Criteria and Other Supporting Information International Programme on Chemical Safety, 2nd ed.; World Health Organization (WHO): Geneva, Switzerland, 1996; Volume 2, 94p. [Google Scholar]
- Eurpoean Union. Directive 2008/56/EC of the European Parliament and of the Concil of 17 June 2008 establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Estrategy Framework Directive). Off. J. Eur. Union 2008, 164, 19–40. [Google Scholar]
- USEPA. Federal Water Pollution Control Act Amendments of, Part 125―Criteria and Standards for the National Pollutant Discharge Elimination System; Code of Federal Regulations, Title 40; United State Environmental Protection Agency (USEPA): Washington, DC, USA, 1972; Volume 21, Chapter I, Sub-Chapter D (Water Programs). [Google Scholar]
- Lind, O.T.; Doyle, R.; Vodopich, D.S.; Trotter, B.G.; Limón, J.G.; Davalos-Lind, L. Clay turbidity: Regulation of phytoplankton production in a large, nutrient-rich tropical lake. Limnol. Oceanogr. 1992, 37, 549–565. [Google Scholar] [CrossRef]
- Limón-Macías, J.G.; Lind, O.T. The management of Lake Chapala (Mexico): Considerations after significant changes in the water regime. Lake Reserv. Manag. 1990, 6, 61–70. [Google Scholar] [CrossRef]
- Lind, O.T.; Davalos-Lind, L.O. Interaction of water quantity with water quality: The Lake Chapala example. Hydrobiologia 2002, 467, 159–167. [Google Scholar] [CrossRef]
- Filonov, A.E.; Tereshchenko, I.E. Thermal lenses and internal solitons in Chapala Lake, Mexico. Chin. J. Oceanol. Limnol. 1999, 17, 308–314. [Google Scholar] [CrossRef]
- Filonov, A.E. On the dynamical response of Lake Chapala, Mexico to lake breeze forcing. Hydrobiologia 2002, 467, 141–157. [Google Scholar] [CrossRef]
- Ávalos-Cueva, D.; Filonov, A.; Tereshchenko, I.; Monzón, C.; Pantoja-González, D.; Velázquez-Muñoz, F. The level variability, thermal structure and currents in Lake Chapala, Mexico. Geofísica Int. 2016, 55, 175–187. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA). Atlas del Agua en México; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2016; 138p. [Google Scholar]
- Aparicio, J. Hydrology of the Lerma-Chapala Watershed. In The Lerma-Chapala Watershed; Hansen, A.M., van Afferden, M., Eds.; Springer: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- De León-Mojarro, B.; Medina-Mendoza, R.; González-Casillas, A. Natural Resources Management in the Lerma-Chapala Basin. In The Lerma-Chapala Watershed; Hansen, A.M., van Afferden, M., Eds.; Springer: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- Hansen, A.M.; van Afferden, M. Toxic Substances. In The Lerma-Chapala Watershed; Hansen, A.M., van Afferden, M., Eds.; Springer: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- Jay, J.A.; Ford, T.E. Water Concentrations, Bioaccumulation, and Human Health Implications of Heavy Metals in Lake Chapala. In The Lerma-Chapala Watershed; Hansen, A.M., van Afferden, M., Eds.; Springer: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- De Anda, J.; Shear, H.; Maniak, U.; Zárate del Valle, P.F. Solids distribution in Lake Chapala, Mexico. J. Am. Water Resour. Assoc. 2004, 40, 97–109. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
- Schalles, J.F. Optical remote sensing techniques to estimate phytoplankton, chlorophyll a concentrations in coastal. In Remote Sensing of Aquatic Coastal Ecosystem Processes; Richardson, L.L., LeDrew, E.F., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 27–79. [Google Scholar]
- Rodríguez-Padilla, J.J. Desarrollo de un Sistema de Información Geográfica para el Análisis de Datos de Calidad de Agua del Lago de Chapala (México). Master’s Thesis, Instituto Tecnológico de Estudios Superiores de Monterrey, Guadalajara, Mexico, 2000; 112p. [Google Scholar]
- Membrillo-Abad, A.S.; Torres-Vera, M.A.; Alcocer, J.; Prol-Ledesma, R.M.; Oseguera, L.A.; Ruiz-Armenta, J.R. Trophic State Index estimation from remote sensing of lake Chapala, México. Rev. Mex. Cienc. Geol. 2016, 33, 183–191. [Google Scholar]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association; American Water Works Association; Water Environmental Federation: Washington, DC, USA, 2005. [Google Scholar]
- Peat, J.; Barton, B. Medical Statistics: A Guide to Data Analysis and Critical Appraisal; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Steinskog, D.J.; Tjøstheim, D.B.; Kvamstø, N.G. A cautionary note on the use of the Kolmogorov—Smirnov test for normality. Mon. Weather Rev. 2007, 135, 1151–1157. [Google Scholar] [CrossRef]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; ESRI: Redlands, CA, USA, 2001; Volume 380. [Google Scholar]
- Clark, I. Practical Geostatistics; Applied Science Publishers: London, UK, 1979; Volume 3, p. 129. [Google Scholar]
- Hongve, D.; Åkesson, G. Comparison of nephelometric turbidity measurements using wavelengths 400–600 and 860 nm. Water Res. 1998, 32, 3143–3145. [Google Scholar] [CrossRef]
- Mylvaganam, S.; Jakobsen, T. Turbidity sensor for underwater applications. In Proceedings of the OCEANS’98 Conference Proceedings, Nice, France, 28 September–1 October 1998; Volume 1, pp. 158–161. [Google Scholar]
- International Organization for Standards (ISO). International Standard ISO 7027—Water Quality—Determination of Turbidity—Part 1: Quantitative Methods; International Organization for Standards (ISO): Geneva, Switzerland, 2016. [Google Scholar]
- USGS (United States, Geological Survey). Landsat 8 Surface Reflectance Code (LaSRC) Product Guide; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2019; 98p.
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem. Appl. Opt. 1996, 35, 4850–4862. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Ruddick, K. Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters. Appl. Opt. 2005, 44, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- USGS. Landsat Surface Reflectance Data; USGS: Sioux Falls, SD, USA, 2015; Fact Sheet 2015–3034; 1p. Available online: https://doi.org/10.3133/fs20153034 (accessed on 25 June 2019).
- Chuvieco, E. Teledetección Ambiental, 3rd ed.; Editorial Ariel: Barcelona, Spain, 2010. [Google Scholar]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, R.P.; Arnone, R.A.; Gould, R.W.; Martinolich, P.M.; Ransibrahmanakul, V. A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters. NASA Tech. Memo. 2003, 206892, 51–59. [Google Scholar]
- Lavender, S.J.; Pinkerton, M.H.; Moore, G.F.; Aiken, J.; Blondeau-Patissier, D. Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters. Cont. Shelf Res. 2005, 25, 539–555. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [Green Version]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Lobo, F.L.; Costa, M.P.; Novo, E.M. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens. Environ. 2015, 157, 170–184. [Google Scholar] [CrossRef]
- Lind, O.T.; Chrzanowski, T.H.; Dávalos-Lind, L. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 1997, 353, 1–18. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing. Remote Sens. Environ. 2007, 110, 149–161. [Google Scholar] [CrossRef]
- Díaz-Torres, J.J.; Hernández-Mena, L.; Murillo-Tovar, M.A.; León-Becerril, E.; López-López, A.; Suárez-Plascencia, C.; Aviña-Rodriguez, E.; Barradas-Gimate, A.; Ojeda-Castillo, V. Assessment of the modulation effect of rainfall on solar radiation availability at the Earth’s surface. Meteorol. Appl. 2017, 24, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Fernex, F.; Zárate-del Valle, P.; Ramírez-Sánchez, H.; Michaud, F.; Parron, C.; Dalmasso, J.; Barci-Funel, G.; Guzman-Arroyo, M. Sedimentation rates in Lake Chapala (western Mexico): Possible active tectonic control. Chem. Geol. 2001, 177, 213–228. [Google Scholar] [CrossRef]
National Water Council (NWC) | This Study | |||||||
---|---|---|---|---|---|---|---|---|
Id | Name | Tag | Id | Name | Tag | Id | Name | Tag |
1 | Lake station 01 | LS 1 | 18 | Lake station 21 | LS 21 | 0 | Acueducto | Ac |
2 | Lake station 02 | LS 2 | 19 | Lake station 22 | LS 22 | 3 | Chapala | Ch |
3 | Lake station 03 | LS 3 | 20 | Lake station 23 | LS 23 | 4 | Ajijic | Aj |
4 | Lake station 04 | LS 4 | 21 | Lake station 24 | LS 24 | 5 | Jocotepec | Jc |
5 | Lake station 05 | LS 5 | 22 | Lake station 25 | LS 25 | 6 | San Pedro | Sp |
6 | Lake station 06 | LS 6 | 23 | Lake station 26 | LS 26 | 7 | West | W |
7 | Lake station 07 | LS 7 | 24 | Lake station 27 | LS 27 | 8 | Tuxcueca | Tx |
8 | Lake station 08 | LS 8 | 25 | Lake station 28 | LS 28 | 9 | Tizapán | Tz |
9 | Lake station 10 | LS 10 | 26 | Shoreline station A | SE-A | 10 | Cojumatlán | Cj |
10 | Lake station 11 | LS 11 | 27 | Shoreline station B | SE-B | 11 | Center 2 | C2 |
11 | Lake station 12 | LS 12 | 28 | Shoreline station C | SE-C | 13 | East | E |
12 | Lake station 13 | LS 13 | 29 | Shoreline station D | SE-D | 14 | Jamay | Jm |
13 | Lake station 14 | LS 14 | 30 | Shoreline station E | SE-E | 15 | Mezcala | Mz |
14 | Lake station 15 | LS 15 | 31 | Shoreline station F | SE-F | 16 | Center 1 | C1 |
15 | Lake station 16 | LS 16 | 32 | Shoreline station G | SE-G | 17 | Santiago | St |
16 | Lake station 17 | LS 17 | 33 | Shoreline station H | SE-H | |||
17 | Lake station 20 | LS 20 | 34 | Shoreline station I | SE-I |
Id. | Landsat-8 Imagery | Date | Id | Landsat-8 Imagery | Date |
---|---|---|---|---|---|
1 | LC08-029046-20160330-01T1 | 30 March 2016 | 9 | LC08-029046-20170317-01T1 | 17 March 2017 |
2 | LC08-029046-20160501-01T1 | 1 May 2016 | 10 | LC08-029046-20170418-01T1 | 18 April 2017 |
3 | LC08-029046-20160602-01T1 | 2 June 2016 | 11 | LC08-029046-20170504-01T1 | 4 May 2017 |
4 | LC08-029046-20160720-01T1 | 20 July 2016 | 11 | LC08-029046-20170504-01T1 | 4 May 2017 |
5 | LC08-029046-20160906-01T1 | 6 September 2016 | 12 | LC08-029046-20170605-01T1 | 5 June 2017 |
6 | LC08-029046-20161125-01T1 | 25 November 2016 | 13 | LC08-029046-20170723-01T1 | 23 July 2017 |
7 | LC08-029046-20161227-01T1 | 27 December 2016 | 14 | LC08-029046-20170909-01T1 | 9 September 2017 |
8 | LC08-029046-20170128-01T1 | 28 January 2017 |
Landsat-8 Imagery | Date | Survey Data | Temporal Delay Range | Field Samples (n) | Type of Correlations | r2, p-Value (Reference, p < 0.05) |
---|---|---|---|---|---|---|
LC08-029046-20160602-01T1 | 2 June 2016 | 7–13 June 2016 (NWC) | Daily | 15 sites | Polynomial (2nd order) | 0.24 (0.1932) |
LC08-029046-20160906-01T1 | 6 September 2016 | 6 September 2016 (TS) | Hourly | 15 sites | Polynomial (2nd order) | 0.73 (0.0004) |
LC08-029046-20170418-01T1 | 18 April 2017 | 24 April 2017 (TS) | Daily | 15 sites | Polynomial (2nd order) | 0.70 (0.0007) |
LC08-029046-20170504-01T1 | 4 May 2017 | 24 April 2017 (TS) | Daily | 5 sites | Lineal | 0.92 (0.0101) |
LC08-029046-20170504-01T1 | 4 May 2017 | 2–7 May 2017 (NWC) | Daily | 8 sites | Lineal | 0.63 (0.0185) |
LC08-029046-20170909-01T1 | 9 September 2017 | 28 August/6 September 2017 (NWC) | Daily | 31 sites | Polynomial (2nd order) | 0.49 (0.0001) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otto, P.; Vallejo-Rodríguez, R.; Keesstra, S.; León-Becerril, E.; de Anda, J.; Hernández-Mena, L.; del Real-Olvera, J.; Díaz-Torres, J.d.J. Time Delay Evaluation on the Water-Leaving Irradiance Retrieved from Empirical Models and Satellite Imagery. Remote Sens. 2020, 12, 87. https://doi.org/10.3390/rs12010087
Otto P, Vallejo-Rodríguez R, Keesstra S, León-Becerril E, de Anda J, Hernández-Mena L, del Real-Olvera J, Díaz-Torres JdJ. Time Delay Evaluation on the Water-Leaving Irradiance Retrieved from Empirical Models and Satellite Imagery. Remote Sensing. 2020; 12(1):87. https://doi.org/10.3390/rs12010087
Chicago/Turabian StyleOtto, Peter, Ramiro Vallejo-Rodríguez, Saskia Keesstra, Elizabeth León-Becerril, José de Anda, Leonel Hernández-Mena, Jorge del Real-Olvera, and José de Jesús Díaz-Torres. 2020. "Time Delay Evaluation on the Water-Leaving Irradiance Retrieved from Empirical Models and Satellite Imagery" Remote Sensing 12, no. 1: 87. https://doi.org/10.3390/rs12010087
APA StyleOtto, P., Vallejo-Rodríguez, R., Keesstra, S., León-Becerril, E., de Anda, J., Hernández-Mena, L., del Real-Olvera, J., & Díaz-Torres, J. d. J. (2020). Time Delay Evaluation on the Water-Leaving Irradiance Retrieved from Empirical Models and Satellite Imagery. Remote Sensing, 12(1), 87. https://doi.org/10.3390/rs12010087