Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Data
2.2.1. Leaf Area Index
2.2.2. Leaf Biochemistry
2.2.3. Trunk Reflectances
2.2.4. Airborne Hyperspectral Remote Sensing Data
2.3. General Methodology
2.3.1. Image Processing for Multitemporal AVIRIS-C Data
2.3.2. Masking Using Canopy Cover and Species Composition Maps Derived From the AVIRIS-NG Image
2.3.3. DART and PROSPECT Radiative Transfer Models Parametrization
2.3.4. Inversion Stategies
2.3.5. Validation Metrics
2.3.6. Seasonal Monitoring
3. Results
3.1. Comparison between Airborne and DART-Simulated Reflectances
3.2. Influence of the Canopy Cover on Vegetation Indices
3.3. Selection of the Best Inversion Strategy
3.3.1. Determination of the Number q Achieving the Best Inversion Performances
3.3.2. LAI Retrieval Performance Comparison
3.3.3. C and Car Retrieval Performance Comparison
3.4. LAI, C and Car Seasonal Monitoring
4. Discussion
4.1. Limitations of the SFR for Low-LAI Sparse Forests Modeling within DART
4.2. Time Dependency of the Best Performing Inversion Method
4.3. Assessment of LAI and Pigment Estimations Accuracy
4.4. Challenges Concerning LAI, C and Car Monitoring
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Biodiversité végétale méditerranéenne et anthropisation: Approches macro et micro-régionales. Ann. Géogr. 2006, 651, 618–640. [Google Scholar] [CrossRef]
- Underwood, E.C.; Viers, J.H.; Klausmeyer, K.R.; Cox, R.L.; Shaw, M.R. Threats and biodiversity in the mediterranean biome. Divers. Distrib. 2009, 15, 188–197. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of european forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.; Cardoso, A.C.; et al. Essential biodiversity variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef] [Green Version]
- Jetz, W.; McGeoch, M.A.; Guralnick, R.; Ferrier, S.; Beck, J.; Costello, M.J.; Fernandez, M.; Geller, G.N.; Keil, P.; Merow, C.; et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 2019, 3, 539–551. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Baldocchi, D.D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 2003, 23, 865–877. [Google Scholar] [CrossRef] [Green Version]
- Shipley, B.; Lechowicz, M.J.; Wright, I.; Reich, P.B. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 2006, 87, 535–541. [Google Scholar] [CrossRef]
- Ma, S.; Baldocchi, D.D.; Mambelli, S.; Dawson, T.E. Are temporal variations of leaf traits responsible for seasonal and inter-annual variability in ecosystem CO2 exchange? Funct. Ecol. 2011, 25, 258–270. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. BioScience 2004, 54, 523. [Google Scholar] [CrossRef]
- Gascon, F.; Gastellu-Etchegorry, J.P.; Lefevre-Fonollosa, M.J.; Dufrene, E. Retrieval of forest biophysical variables by inverting a 3-D radiative transfer model and using high and very high resolution imagery. Int. J. Remote Sens. 2004. [Google Scholar] [CrossRef]
- Homolová, L.; Janoutová, R.; Malenovský, Z. Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscopy data. ISPRS Arch. 2016. [Google Scholar] [CrossRef]
- Banskota, A.; Serbin, S.P.; Wynne, R.H.; Thomas, V.A.; Falkowski, M.J.; Kayastha, N.; Gastellu-Etchegorry, J.P.; Townsend, P.A. An LUT-Based Inversion of DART Model to Estimate Forest LAI from Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3147–3160. [Google Scholar] [CrossRef]
- Asner, G.P. Erratum: Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Eriksson, H.M.; Eklundh, L.; Kuusk, A.; Nilson, T. Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sens. Environ. 2006, 103, 408–418. [Google Scholar] [CrossRef]
- Eklundh, L.; Harrie, L.; Kuusk, A. Investigating relationships between landsat ETM+ sensor data and leaf area index in a boreal conifer forest. Remote Sens. Environ. 2001, 78, 239–251. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Baret, F.; Buis, S. Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 173–201. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Adeline, K.; Roth, K.; Huesca, M.; Gastellu-Etchegorry, J.; Baldocchi, D.; Ustin, S. Spectral sensitivity of radiative transfer inversion for seasonal canopy pigments estimation from aviris data in a woodland savanna ecosystem. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Ali, A.M.; Skidmore, A.K.; Darvishzadeh, R.; van Duren, I.; Holzwarth, S.; Mueller, J. Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 2016, 122, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Matkan, A.A.; Dashti Ahangar, A. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Sel.Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Malenovský, Z.; Martin, E.; Homolová, L.; Gastellu-Etchegorry, J.P.; Zurita-Milla, R.; Schaepman, M.E.; Pokorný, R.; Clevers, J.G.; Cudlín, P. Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution. Remote Sens. Environ. 2008, 112, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Miller, J.R.; Morales, A.; Berjón, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Zarco-Tejada, P.J. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sens. Environ. 2012, 127, 298–315. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Hornero, A.; Beck, P.S.; Kattenborn, T.; Kempeneers, P.; Hernández-Clemente, R. Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sens. Environ. 2019, 223, 320–335. [Google Scholar] [CrossRef]
- Widlowski, J.L.; CÔté, J.F.; Béland, M. Abstract tree crowns in 3D radiative transfer models: Impact on simulated open-canopy reflectances. Remote Sens. Environ. 2014, 142, 155–175. [Google Scholar] [CrossRef]
- Melendo-Vega, J.R.; Martín, M.P.; Pacheco-Labrador, J.; González-Cascón, R.; Moreno, G.; Pérez, F.; Migliavacca, M.; García, M.; North, P.; Riaño, D. Improving the performance of 3-D radiative transfer model FLIGHT to simulate optical properties of a tree-grass ecosystem. Remote Sens. 2018, 10, 2061. [Google Scholar] [CrossRef] [Green Version]
- Janoutová, R.; Homolová, L.; Malenovský, Z.; Hanuš, J.; Lauret, N.; Gastellu-Etchegorry, J.P. Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests 2019, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Baldocchi, D.; Gong, P.; Dawson, T. Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities. Agric. For. Meteorol. 2008, 148, 1005–1020. [Google Scholar] [CrossRef]
- Ma, S.; Baldocchi, D.D.; Xu, L.; Hehn, T. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric. For. Meteorol. 2007, 147, 157–171. [Google Scholar] [CrossRef]
- Rich, P.M.; Wood, J.; Vieglais, D.A.; Burek, K.; Webb, N. Guide to HemiView: Software for Analysis of Hemispherical Photography; Delta-T Devices, Ltd.: Cambridge, UK, 1999. [Google Scholar]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Gao, B.-C.; Goetz, A.F. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. J. Geophys. Res. 1990, 95, 3549–3564. [Google Scholar] [CrossRef]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 1988, 26, 1–14. [Google Scholar] [CrossRef]
- Karpouzli, E.; Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 2003, 24, 1143–1150. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Clayton, C.R.; Retalis, A. The use of selected pseudo-invariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 192–200. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Kobayashi, H.; Baldocchi, D.D.; Ryu, Y.; Chen, Q.; Ma, S.; Osuna, J.L.; Ustin, S.L. Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-dimensional approach. Agric. For. Meteorol. 2012, 152, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Gastellu-Etchegorry, J.P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Feret, J.B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens. 2015, 7, 1667–1701. [Google Scholar] [CrossRef] [Green Version]
- Gastellu-Etchegorry, J.P.; Gascon, F.; Estève, P. An interpolation procedure for generalizing a look-up table inversion method. Remote Sens. Environ. 2003, 87, 55–71. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Hill, J.; Buddenbaum, H.; Townsend, P.A. Imaging Spectroscopy of Forest Ecosystems: Perspectives for the Use of Space-borne Hyperspectral Earth Observation Systems. Surv. Geophys. 2019, 40, 553–588. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Malenovský, Z.; Clevers, J.G.P.W. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sens. Environ. 2010, 114, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2013, 171–172, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B Biol. 2001, 61, 52–61. [Google Scholar] [CrossRef]
- Smith, R.C.G.; Adams, J.; Stephens, D.J.; Hick, P.T. Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Aust. J. Agric. Res. 1995, 46, 113–125. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Féret, J.B.; Grau, E.; Gastellu-Etchegorry, J.P.; Shimabukuro, Y.E.; de Souza Filho, C.R. Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy. Remote Sens. Environ. 2018, 211, 276–291. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.M.; Miller, J.R.; Noland, T.L. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens. Environ. 2008, 112, 3234–3247. [Google Scholar] [CrossRef]
- Delegido, J.; Alonso, L.; González, G.; Moreno, J. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 165–174. [Google Scholar] [CrossRef]
- Demarez, V.; Gastellu-Etchegorry, V.; Mougin, E.; Marty, G.; Proisy, C.; Dufrêne, E.; Ledantec, V. Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the prospect model. Int. J. Remote Sens. 1999, 20, 879–894. [Google Scholar] [CrossRef]
- Gara, T.W.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Heurich, M. Evaluating the performance of PROSPECT in the retrieval of leaf traits across canopy throughout the growing season. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101919. [Google Scholar] [CrossRef]
- Stöckli, R.; Rutishauser, T.; Baker, I.; Liniger, M.A.; Denning, A.S. A global reanalysis of vegetation phenology. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C.; Kaufman, Y.J.; Han, W.; Wiscombe, W.J. Correction of thin cirrus path radiances in the 0.4–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel. J. Geophys. Res. Atmos. 1998, 103, 32169–32176. [Google Scholar] [CrossRef]
- Gao, B.C.; Li, R.R. Removal of thin cirrus scattering effects in landsat 8 OLI images using the cirrus detecting channel. Remote Sens. 2017, 9, 834. [Google Scholar] [CrossRef] [Green Version]
- Salgado, S.; Poutier, L.; Briottet, X.; Mathieu, S. Validation of an empirical method for thin cirrus correction with Sentinel-2 data. In Proceedings of the SPIE 11152, Remote Sensing of Clouds and the Atmosphere XXIV, Strasbourg, France, 10 October 2019; p. 111520H. [Google Scholar] [CrossRef]
Validation Data | ||
---|---|---|
Date | LAI | Biochemistry |
Summer 2013 | 3 | |
Fall 2013 | 12 | 5 |
Summer 2014 | 19 | 5 |
Summer 2016 | 21 | |
Total | 52 | 13 |
AVIRIS-C | AVIRIS-NG | ||||
---|---|---|---|---|---|
Year | Season | Date (DOY ) | Time (PDT ) | Date (DOY) | Time (PDT) |
2013 | Spring | 2 May (122) | 01h30 p.m. | ||
Summer | 4 June (155) | 12h30 p.m. | |||
Fall | 19 September (262) | 12h40 p.m. | |||
2014 | Summer | 2 June (153) | 12h00 p.m. | 6 June (157) | 12h24 p.m. |
2015 | Spring | 29 April (119) | 11h40 a.m. | ||
Summer | 8 June (159) | 01h40 p.m. | |||
Fall | 13 October (286) | 12h30 p.m. | |||
2016 | Summer | 9 June (161) | 12h30 p.m. | ||
2017 | Summer | 20 June (171) | 01h00 p.m. | ||
2018 | Summer | 21 June (172) | 01h00 p.m. |
Parameters | Values/Range | Step | Number of Values |
---|---|---|---|
General settings | |||
CC (%) | 10–90 | 20 | 5 |
Scene dimensions x × y (m) for: | |||
CC 10 % | 32.4 × 32.4 | ||
CC 30 % | 18.8 × 18.8 | ||
CC 50 % | 14.4 × 14.4 | ||
CC 70 % | 12.4 × 12.4 | ||
CC 90 % | 10.8 × 10.8 | ||
Voxel size x, y, z (m) | 0.4, 0.4, 0.4 | ||
Tree characteristics | |||
Tree height (m) | 9.4 | ||
Crown shape | ellipsoidal | ||
Crown diameter (m) | 5.8 | ||
Crown height (m) | 7.5 | ||
Trunk height (below & within crown) (m) | 1.9, 4.73 | ||
Trunk dbh (m) | 0.26 |
Parameters | Acronym | Values/Range | Step | Number of Values |
---|---|---|---|---|
Leaf Angle Distribution | LAD | spherical | ||
Leaf Area Index (m/m) | LAI | 0.1–1.9 | 0.3 | 7 |
Chlorophylls a+b content (g/cm) | C | 10–60 | 10 | 6 |
Carotenoid content (g/cm) | Car | 2–22 | 4 | 6 |
Dry matter content (g/cm) | C | 0.001–0.016 | 0.003 | 6 |
Equivalent Water Thickness (cm) | C | 0.001–0.021 | 0.004 | 6 |
Parameter | Method | N | VI Formula (Wavelengths in m) | Reference |
---|---|---|---|---|
LAI | RMSE INT LAI | 120 | ||
SAM INT LAI | 120 | |||
2 | [58] | |||
2 | [55] | |||
Cab | RMSE INT CAB | 27 | ||
SAM INT CAB | 27 | |||
4 | [59] | |||
3 | [60] | |||
2 | [61] | |||
2 | [62] | |||
3 | [47] | |||
Car | RMSE INT CAR | 6 | ||
SAM INT CAR | 6 | |||
2 | [30] | |||
2 | [63] |
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spr. | Sum. | Fall | Sum. | Spr. | Sum. | Fall | Sum. | Sum. | Sum. | ||
LAI | INT LAI | 32 | 58 | 67 | 62 | 67 | 65 | 53 | 25 | 56 | 55 |
NDVI | 99 | 99 | 99 | 100 | 99 | 98 | 97 | 99 | 99 | 97 | |
MSAVI2 | 96 | 98 | 94 | 99 | 93 | 97 | 90 | 97 | 98 | 96 | |
C | INT CAB | 46 | 71 | 84 | 82 | 84 | 79 | 71 | 33 | 60 | 62 |
MCARI2 | 98 | 98 | 91 | 99 | 97 | 98 | 90 | 98 | 98 | 97 | |
TCARI/OSAVI | 100 | 100 | 97 | 99 | 100 | 98 | 98 | 93 | 98 | 97 | |
Maccioni | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
gNDVI | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
GM_94b | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Car | INT CAR | 100 | 100 | 100 | 100 | 100 | 99 | 100 | 100 | 94 | 78 |
R515/R570 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
CRI | 100 | 99 | 100 | 100 | 100 | 92 | 100 | 93 | 83 | 68 |
Fall 2013 | Summer 2014 | Summer 2016 | All Dates | ||
---|---|---|---|---|---|
q | 100 | 100 | 100 | 100 | |
LAI [m²/m²] | RMSE INT LAI | 0.61 | 0.61 | 0.63 | 0.62 |
SAM INT LAI | 0.66 | 0.21 | 0.31 | 0.39 | |
NDVI | 0.17 | 0.23 | 0.24 | 0.22 | |
MSAVI2 | 0.18 | 0.24 | 0.29 | 0.25 | |
Summer 2013 | Fall 2013 | Summer 2014 | All Dates | ||
q | 300 | 300 | 300 | 300 | |
Cab [µg/cm²] | RMSE INT CAB | 12.45 | 15.36 | 6.36 | 11.92 |
SAM INT CAB | 9.1 | 15.91 | 5.8 | 11.37 | |
MCARI2 | 10.44 | 14.38 | 10.57 | 12.15 | |
TCARI/OSAVI | 5.86 | 8.09 | 4.31 | 6.34 | |
Maccioni | 8.38 | 9.34 | 6.12 | 8.02 | |
gNDVI | 9.09 | 4.22 | 2.89 | 5.39 | |
GM_94b | 8.62 | 3.86 | 3.39 | 5.21 | |
q | 400 | 400 | 400 | 400 | |
Car [µg/cm²] | RMSE INT CAR | 0.58 | 1.14 | 2.94 | 1.34 |
SAM INT CAR | 4.78 | 9.31 | 2.36 | 6.54 | |
R515/R570 | 5.74 | 4.32 | 2.74 | 4.01 | |
CRI | 2.87 | 3.83 | 1.91 | 2.89 |
Method | RMSE | bias | STDB | |
---|---|---|---|---|
[m/m] | [m/m] | [m/m] | ||
RMSE INT LAI | 0.62 | −0.49 | 0.29 | 0.38 |
SAM INT LAI | 0.39 | −0.27 | 0.25 | 0.63 |
NDVI | 0.22 | 0.07 | 0.18 | 0.80 |
MSAVI2 | 0.25 | 0.14 | 0.17 | 0.81 |
Method | RMSE | bias | STDB | |
---|---|---|---|---|
[g/cm] | [g/cm] | [g/cm] | ||
C | ||||
RMSE INT CAB | 11.92 | 8.99 | 5.21 | 0.14 |
SAM INT CAB | 11.37 | 7.46 | 6.05 | 0.08 |
MCARI2 | 12.15 | −5.05 | 8.62 | 0.01 |
TCARI/OSAVI | 6.34 | 2.75 | 4.15 | 0.48 |
Maccioni | 8.02 | 4.36 | 5.03 | 0.32 |
gNDVI | 5.39 | −2.15 | 3.82 | 0.61 |
GM_94b | 5.21 | −3.21 | 3.38 | 0.73 |
Car | ||||
RMSE INT CAR | 1.34 | 0.79 | 1.06 | 0.59 |
SAM INT CAR | 6.53 | 1.59 | 4.53 | 0.29 |
R515/R570 | 4.01 | −1.26 | 3.74 | 0.26 |
CRI | 2.89 | −0.2 | 2.1 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miraglio, T.; Adeline, K.; Huesca, M.; Ustin, S.; Briottet, X. Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling. Remote Sens. 2020, 12, 28. https://doi.org/10.3390/rs12010028
Miraglio T, Adeline K, Huesca M, Ustin S, Briottet X. Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling. Remote Sensing. 2020; 12(1):28. https://doi.org/10.3390/rs12010028
Chicago/Turabian StyleMiraglio, Thomas, Karine Adeline, Margarita Huesca, Susan Ustin, and Xavier Briottet. 2020. "Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling" Remote Sensing 12, no. 1: 28. https://doi.org/10.3390/rs12010028
APA StyleMiraglio, T., Adeline, K., Huesca, M., Ustin, S., & Briottet, X. (2020). Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland Savanna Using Hyperspectral Imagery and 3D Radiative Transfer Modeling. Remote Sensing, 12(1), 28. https://doi.org/10.3390/rs12010028