Next Article in Journal
Predicting Forest Inventory Attributes Using Airborne Laser Scanning, Aerial Imagery, and Harvester Data
Next Article in Special Issue
Generating High Spatio-Temporal Resolution Fractional Vegetation Cover by Fusing GF-1 WFV and MODIS Data
Previous Article in Journal
Improving Aboveground Forest Biomass Maps: From High-Resolution to National Scale
Previous Article in Special Issue
Decadal Changes of the Reflected Solar Radiation and the Earth Energy Imbalance
Open AccessArticle

RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements

1
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
2
L-1 Standards and Technology, Manassas, VA 20109, USA
*
Author to whom correspondence should be addressed.
Current address: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Remote Sens. 2019, 11(7), 796; https://doi.org/10.3390/rs11070796
Received: 16 February 2019 / Revised: 25 March 2019 / Accepted: 1 April 2019 / Published: 3 April 2019
(This article belongs to the Special Issue Earth Radiation Budget)
The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat mission is a pathfinder to demonstrate technologies for the measurement of Earth’s radiation budget, the quantification of which is critical for predicting the future course of climate change. A specific motivation is the need for lower-cost technology alternatives that could be used for multi-point constellation measurements of Earth outgoing radiation. RAVAN launched 11 November 2016, into a nearly 600-km, Sun-synchronous orbit, and collected data for over 20 months. RAVAN successfully demonstrates two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as absorbers in broadband radiometers for measuring Earth’s outgoing radiation and the total solar irradiance. VACNT forests are arguably the blackest material known and have an extremely flat spectral response over a wide wavelength range, from the ultraviolet to the far infrared. As radiometer absorbers, they have greater sensitivity for a given time constant and are more compact than traditional cavity absorbers. The second technology demonstrated is a pair of gallium phase-change black body cells that are used as a stable reference to monitor the degradation of RAVAN’s radiometer sensors on orbit. Four radiometers (two VACNT, two cavity), the pair of gallium black bodies, and associated electronics are accommodated in the payload of an agile 3U CubeSat bus that allows for routine solar and deep-space attitude maneuvers, which are essential for calibrating the Earth irradiance measurements. The radiometers show excellent long-term stability over the course of the mission and a high correlation between the VACNT and cavity radiometer technologies. Short-term variability—at greater than the tenths-of-a-Watt/m2 needed for climate accuracy—is a challenge that remains, consistent with insufficient thermal knowledge and control on a 3U CubeSat. There are also VACNT–cavity biases of 3% and 6% in the Total and SW channels, respectively, which would have to be overcome in a future mission. Although one of the black bodies failed after four months, the other provided a repeatable standard for the duration of the project. We present representative measurements from the mission and demonstrate how the radiometer time series can be used to reconstruct outgoing radiation spatial information. Improvements to the technology and approach that would lead to better performance and greater accuracy in future missions are discussed. View Full-Text
Keywords: Earth radiation budget; outgoing longwave radiation; reflected solar radiation; energy imbalance; carbon nanotubes; gallium black body; CubeSat Earth radiation budget; outgoing longwave radiation; reflected solar radiation; energy imbalance; carbon nanotubes; gallium black body; CubeSat
Show Figures

Graphical abstract

MDPI and ACS Style

Swartz, W.H.; Lorentz, S.R.; Papadakis, S.J.; Huang, P.M.; Smith, A.W.; Deglau, D.M.; Yu, Y.; Reilly, S.M.; Reilly, N.M.; Anderson, D.E. RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements. Remote Sens. 2019, 11, 796.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop