Next Article in Journal
Altimeter Observation-Based Eddy Nowcasting Using an Improved Conv-LSTM Network
Next Article in Special Issue
Evaluation of Six Satellite-Based Precipitation Products and Their Ability for Capturing Characteristics of Extreme Precipitation Events over a Climate Transition Area in China
Previous Article in Journal
Editorial for the Special Issue “Remote Sensing of Atmospheric Conditions for Wind Energy Applications”
Previous Article in Special Issue
Remote Sensing of Water Use Efficiency and Terrestrial Drought Recovery across the Contiguous United States
Open AccessArticle

Identifying 2010 Xynthia Storm Signature in GNSS-R-Based Tide Records

1
GET-GRGS, UMR 5563, CNRS/IRD/UPS, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
2
Institute for Development of Advanced Technical and Technology (IDAT), Vietnam Union of Science and Technology Association (VUSTA), Hanoi, Vietnam
3
LEGOS-GRGS, UMR 5566, CNES/CNRS/IRD/UPS, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
4
Université de Pau et des Pays de l’Adour, Laboratoire de Sciences Appliquées au Génie Civil et au Génie Côtier JE2519, Allée du parc Montaury, 64600 Anglet, France
5
Université Bordeaux 1, CNRS, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire—CS 50023, F-33615 Pessac, France
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(7), 782; https://doi.org/10.3390/rs11070782
Received: 29 January 2019 / Revised: 8 March 2019 / Accepted: 27 March 2019 / Published: 1 April 2019
(This article belongs to the Special Issue Remote Sensing of Hydrological Extremes)
In this study, three months of records (January–March 2010) that were acquired by a geodetic Global Navigation Satellite Systems (GNSS) station from the permanent network of RGP (Réseau GNSS Permanent), which was deployed by the French Geographic Institute (IGNF), located in Socoa, in the south of the Bay of Biscay, were used to determine the tide components and identify the signature of storms on the signal to noise ratio (SNR) during winter 2010. The Xynthia storm hit the French Atlantic coast on the 28th of February 2010, causing large floods and damages from the Gironde to the Loire estuaries. Blind separation of the tide components and of the storm signature was achieved while using both a singular spectrum analysis (SSA) and a continuous wavelet transform (CWT). A correlation of 0.98/0.97 and root mean square error (RMSE) of 0.21/0.28 m between the tide gauge records of Socoa and our estimates of the sea surface height (SSH) using the SSA and the CWT, respectively, were found. Correlations of 0.76 and 0.7 were also obtained between one of the modes from the SSA and atmospheric pressure from a meteorological station and a mode of the SSA. Particularly, a correlation reaches to 0.76 when using both the tide residual that is associated to surges and atmospheric pressure variation. View Full-Text
Keywords: GNSS; Singular Spectrum Analysis; Continuous Wavelet Transform; tide gauge; inverted barometer; surge storm GNSS; Singular Spectrum Analysis; Continuous Wavelet Transform; tide gauge; inverted barometer; surge storm
Show Figures

Graphical abstract

MDPI and ACS Style

Vu, P.L.; Ha, M.C.; Frappart, F.; Darrozes, J.; Ramillien, G.; Dufrechou, G.; Gegout, P.; Morichon, D.; Bonneton, P. Identifying 2010 Xynthia Storm Signature in GNSS-R-Based Tide Records. Remote Sens. 2019, 11, 782.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop