Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries
Abstract
:1. Introduction
2. Study Site and Dataset
2.1. Study Site
2.2. Wordview-3 Satellite Image
2.3. Airborne LiDAR Data
3. Methodology
3.1. Geometric and Registration
3.2. Geo-Positioning Model
3.3. Radiometric Methods
3.4. GCP Quantities and Pattern
- Random data collection: The GCPs were collected randomly without any pre-designed strategy.
- Systematic data collection: Firstly, the study area was divided into equal-grid mesh, and then, the GSPs were collected from each grid until the whole image was covered.
- Convenience data collection: The GCPs were collected precisely from well-defined positions, such as corners of buildings (i.e., high-rise built-up that mostly affected by skewness) and edges of swimming pools.
3.5. Accuracy Assessment
3.5.1. Horizontal Accuracy
3.5.2. Vertical Accuracy
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Pu, R.; Liu, X. A new image processing procedure integrating PCI-RPC and ArcGIS-Spline tools to improve the orthorectification accuracy of high-resolution satellite imagery. Remote Sens. 2016, 8, 827. [Google Scholar] [CrossRef]
- Piero, B.; Borgogno Mondino, E.; Tonolo, F.G.; Andrea, L. Orthorectification of high resolution satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 30–35. [Google Scholar]
- Mojaddadi Rizeei, H.; Pradhan, B.; Saharkhiz, M.A. Urban object extraction using Dempster Shafer feature-based image analysis from worldview-3 satellite imagery. Int. J. Remote Sens. 2019, 40, 1092–1119. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Shafri, H.Z.; Mohamoud, M.A.; Pradhan, B.; Kalantar, B. Oil palm counting and age estimation from WorldView-3 imagery and LiDAR data using an integrated OBIA height model and regression analysis. J. Sens. 2018, 2018. [Google Scholar] [CrossRef]
- Aal-shamkhi, A.D.S.; Mojaddadi, H.; Pradhan, B.; Abdullahi, S. Extraction and modeling of urban sprawl development in Karbala City using VHR satellite imagery. In Spatial Modeling and Assessment of Urban Form; Springer: Berlin/Heidelberg, Germany, 2017; pp. 281–296. [Google Scholar]
- Abdullahi, S.; Pradhan, B.; Mojaddadi, H. City compactness: Assessing the influence of the growth of residential land use. J. Urban Technol. 2018, 25, 21–46. [Google Scholar] [CrossRef]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat. Hazards Risk 2017, 8, 1080–1102. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Mojaddadi Rizeei, H.; Park, H.J. Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and R evised U niversal Soil L oss E quation model. Land Degrad. Dev. 2018, 29, 3440–3455. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Surface runoff prediction regarding LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region. Arab. J. Geosci. 2018, 11, 53. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto Int. 2016, 31, 1158–1177. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Chmiel, J.; Kay, S.; Spruyt, P. Orthorectification and geometric quality assessment of very high spatial resolution satellite imagery for Common Agricultural Policy purposes. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 12–23. [Google Scholar]
- Mezaal, M.; Pradhan, B.; Rizeei, H. Improving Landslide Detection from Airborne Laser Scanning Data Using Optimized Dempster–Shafer. Remote Sens. 2018, 10, 1029. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Azeez, O.S.; Pradhan, B.; Khamees, H.H. Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environ. Monit. Assess. 2018, 190, 633. [Google Scholar] [CrossRef] [PubMed]
- Dowman, I.; Dare, P. Automated procedures for multisensor registration and orthorectification of satellite images. In Proceedings of the International Archives of Photogrammetry and Remote Sensing, Valladolid, Spain, 3–4 June 1999. [Google Scholar]
- Marsetič, A.; Oštir, K.; Fras, M.K. Automatic orthorectification of high-resolution optical satellite images using vector roads. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6035–6047. [Google Scholar] [CrossRef]
- Chen, L.-C.; Teo, T.-A.; Rau, J.-Y. Optimized patch backprojection in orthorectification for high resolution satellite images. Int. Arch. Photogramm. Remote Sens 2004, 35, 586–591. [Google Scholar]
- Fraser, C.S.; Dial, G.; Grodecki, J. Sensor orientation via RPCs. ISPRS J. Photogramm. Remote Sens. 2006, 60, 182–194. [Google Scholar] [CrossRef]
- Aguilar, M.A.; del Mar Saldana, M.; Aguilar, F.J. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Toutin, T. Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Fraser, C.S.; Hanley, H.B. Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogramm. Eng. Remote Sens. 2005, 71, 909–915. [Google Scholar] [CrossRef]
- Crespi, M.; Fratarcangeli, F.; Giannone, F.; Pieralice, F. High resolution satellite image orientation models. In Geospatial Technology for Earth Observation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 63–104. [Google Scholar]
- Erdogan, M.; Yilmaz, A.; Eker, O. The georeferencing of RASAT satellite imagery and some practical approaches to increase the georeferencing accuracy. Geocarto Int. 2016, 31, 647–660. [Google Scholar] [CrossRef]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Zoej, M.V.; Mokhtarzade, M.; Mansourian, A.; Ebadi, H.; Sadeghian, S. Rational function optimization using genetic algorithms. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 403–413. [Google Scholar] [CrossRef]
- Toutin, T. Three-Dimensional Geometric Correction of Earth Observation Satellite Data. In Advances in Environmental Remote Sensing; CRC Press: Boca Raton, FL, USA, 2011; pp. 173–217. [Google Scholar]
- Ono, T.; Hattori, S.; Hasegawa, H.; Akamatsu, S.-i. Digital mapping using high resolution satellite imagery based on 2D affine projection model. Int. Arch. Photogramm. Remote Sens. 2000, 33, 672–677. [Google Scholar]
- Singh, M.K.; Gupta, R.; Snehmani; Bhardwaj, A.; Ganju, A. Effect of sensor modelling methods on computation of 3-D coordinates from Cartosat-1 stereo data. Geocarto Int. 2016, 31, 506–526. [Google Scholar] [CrossRef]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogramm. Rec. 2012, 27, 58–73. [Google Scholar] [CrossRef]
- Cheng, P.; Toutin, T. Ortho Rectification and DEM generation from high resolution satellite data. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001; p. 9. [Google Scholar]
- Qin, Z.; Li, W.; Li, M.; Chen, Z.; Zhou, G. A methodology for true orthorectification of large-scale urban aerial images and automatic detection of building occlusions using digital surface model. In Proceedings of the Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 729–731. [Google Scholar]
- Wolniewicz, W. Assessment of geometric accuracy of VHR satellite images. Proceeding Xxth Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 12–23. [Google Scholar]
- Afify, H.; Zhang, Y. Accuracy Assessment of User-Derived RFCs for Ortho-Rectification of High-Resolution Satellite Imagery. Int. J. Geoinform. 2008, 4, 17–24. [Google Scholar]
- Maglione, P.; Parente, C.; Vallario, A. Using rational polynomial functions for rectification of GeoEye-1 imagery. IOSR J. Appl. Geol. Geophys. 2013, 1, 12–17. [Google Scholar] [CrossRef]
- Capaldo, P.; Crespi, M.; Fratarcangeli, F.; Nascetti, A.; Pieralice, F. DSM generation from high resolution imagery: Applications with WorldView-1 and Geoeye-1. Ital. J. Remote Sens. 2012, 44, 41–53. [Google Scholar] [CrossRef]
- Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1358. [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Fraser, C.; Ravanbakhsh, M. Georeferencing performance of GEOEYE-1. Photogramm. Eng. Remote Sens. 2009, 75, 634–638. [Google Scholar]
- Raabe, E.A.; Stumpf, R.P. Image Processing Methods; Procedures in Selection, Registration, Normalization and Enhancement of Satellite Imagery in Coastal Wetlands; US Geological Survey, Center for Coastal Geology: St. Petersburg, FL, USA, 1997.
- Errico, A.; Guastaferro, F.; Parente, C.; Santamaria, R. Applications on geometric correction of different resolution satellite images. In Proceedings of the IEEE GOLD Conference 2010, Livorno, Italy, 29–30 April 2010. [Google Scholar]
- Guastaferro, F.; Maglione, P.; Parente, C. Rectification of spot 5 satellite imagery for marine geographic information systems. In Proceedings of the Advanced Research in Scientific Areas Virtual International Conference, Žilina, Slovakia, 3–7 December 2012; pp. 3–7. [Google Scholar]
- Authority, T.V. Geospatial Positionng Accuracy Standards Part 3: National Standard for Spatial Data Accuracy; National Aeronautics and Space Administration: Virginia, NV, USA, 1998.
- Kapnias, D.; Milenov, P.; Kay, S. Guidelines for Best Practice and Quality Checking of Ortho Imagery; Joint Research Centre: Ispra (VA), Italy, 2008. [Google Scholar]
- McGlone, J. Manual of Photogrammetry, 5th ed.; The American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2004. [Google Scholar]
Image Metadata Information | Image Band | Spectral Range (nm) | Band Name | |
---|---|---|---|---|
Acquisition date | 9 December 2014 | 1 | 400–450 | Coastal |
Swath width at nadir | 13.1 km | 2 | 450–510 | Blue |
Satellite elevation | 617 km | 3 | 510–580 | Green |
Geolocation accuracy | <3.5 m | 4 | 585–625 | Yellow |
Cloud cover | 0.014% | 5 | 630–690 | Red |
Temporal resolution | >1 day | 6 | 705–745 | Red |
Special pixel size | Pan 0.31 m GSD at Nadir 0.34 m at 20° Off-Nadir, MS 1.24 m | 7 | 770–895 | NIR-1 |
Radiometric resolution | 11-bits Pan and MS; 14-bits per pixel SWIR | 8 | 860–900 | NIR-2 |
Order number | 054394901;T-DGPO-2015-112 | 9 | 450–800 | Pan |
RPC Parameter | Value |
---|---|
Error Bias | 1.10 |
Error Rand | 0.14 |
Line Offset | 23,460 |
Sample Offset | 20,640 |
Latitude Offset | 3.1290 |
Longitude Offset | 101.6078 |
Height Offset | 80 |
Line Scale | 23,563 |
Sample Scale | 20,643 |
Latitude Scale | 0.0641 |
Longitude Scale | 0.0557 |
Full Name | Abbreviation | Interpolation Method | Algorithm |
---|---|---|---|
Nearest neighbour | NN | No | Nearest pixel value |
Bilinear interpolation | BI | Linear | Four pixels average value |
Cubic convolution | CC | convolution | Eight cube average value |
GCPs | Horizontal acc. | Vertical acc. | |||
---|---|---|---|---|---|
Pattern Type | Resampling Method | RMSE of X (m) | RMSE of Y (m) | RMSE of R (m) | RMSE of Z (m) |
Convenience | BI | 1.2 | 1.5 | 1.9 | 1.1 |
CC | 1 | 1.45 | 1.8 | 0.8 | |
NN | 1.3 | 1.6 | 1.8 | 1 | |
Systematic | BI | 1 | 8.2 | 6.4 | 7.7 |
CC | 0.8 | 7.6 | 6.5 | 7.3 | |
NN | 0.9 | 8.1 | 6.3 | 7.5 | |
Random | BI | 1.3 | 9.6 | 10.2 | 9.1 |
CC | 1.2 | 9.5 | 9.9 | 9.1 | |
NN | 1.3 | 9.7 | 10.1 | 9.1 |
GCPs | CSE (m) | LE (m) | Geoid Offset (m) | |
---|---|---|---|---|
Number | Resampling Method | |||
<20 | BI | 11.5 | 8.5 | −3.03 |
CC | 11.4 | 8.3 | −3.03 | |
NN | 11.6 | 8.7 | −3.03 | |
20–100 | BI | 3.3 | 4.3 | −3.03 |
CC | 3.2 | 3.3 | −3.03 | |
NN | 3.5 | 4.5 | −3.03 | |
>100 | BI | 8.4 | 9.2 | −3.03 |
CC | 8.3 | 8.9 | −3.03 | |
NN | 8.4 | 9.4 | −3.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizeei, H.M.; Pradhan, B. Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries. Remote Sens. 2019, 11, 692. https://doi.org/10.3390/rs11060692
Rizeei HM, Pradhan B. Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries. Remote Sensing. 2019; 11(6):692. https://doi.org/10.3390/rs11060692
Chicago/Turabian StyleRizeei, Hossein Mojaddadi, and Biswajeet Pradhan. 2019. "Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries" Remote Sensing 11, no. 6: 692. https://doi.org/10.3390/rs11060692
APA StyleRizeei, H. M., & Pradhan, B. (2019). Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries. Remote Sensing, 11(6), 692. https://doi.org/10.3390/rs11060692