# Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials

#### 2.1. Micro Pulse Lidar (MPL)

#### 2.2. Description of Evaluation Data

_{2}, latent (H

_{2}O), and sensible heat flux ($H$) at 3.0 m AGL of 30 min intervals. The 32 m Micrometeorological tower at SACOL can provide wind speed measurements (014A-L, Met One) at 1, 2, 4, 8, 16, and 32 m with a temporal resolution of 30 min [48]. The wind speed at any two heights can approximately estimate the ground-layer wind shear ($S$). The observations of the surface sensible heat flux, momentum flux, and wind shear can be combined to estimate buoyance and shear productions ($H$ and $M=F\xb7S$) of ground-layer turbulent kinetic energy (TKE), which is a critical measure of the turbulent intensity.

## 3. Methods

#### 3.1. Traditional Techniques

#### 3.2. The Detailed Process for Improving the ABLH Determination

#### 3.3. The Evaluation Method

## 4. Results

#### 4.1. Comparisons between Lidar and Radiosonde Measurements of ABLH

#### 4.2. Diurnal Cycle of the ABLH

#### 4.2.1. Residual Layer Exists in the Morning

#### 4.2.2. ABLH Retrieval in Cloudy Situations

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Stull, R.B. An Introduction to Boundary Layer Meteorology. Atmos. Sci. Libr.
**1988**, 8, 89. [Google Scholar] - Betts, A.K. Climate-Convection Feedbacks: Some Further Issues. Clim. Chang.
**1998**, 39, 35–38. [Google Scholar] [CrossRef] - Culf, A.D. Equilibrium evaporation beneath a growing convective boundary layer. Bound.-Layer Meteorol.
**1994**, 70, 37–49. [Google Scholar] [CrossRef] - Therry, G.; Lacarrère, P. Improving the Eddy Kinetic Energy model for planetary boundary layer description. Bound.-Layer Meteorol.
**1983**, 25, 63–88. [Google Scholar] [CrossRef] - Maronga, B.; Raasch, S.J. Large-Eddy Simulations of Surface Heterogeneity Effects on the;Convective Boundary Layer During the LITFASS-2003 Experiment. Bound.-Layer Meteorol.
**2013**, 146, 17–44. [Google Scholar] [CrossRef] - Hu, X.M.; Nielsengammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. J. Appl. Meteorol. Climatol.
**2010**, 49, 1831–1844. [Google Scholar] [CrossRef] [Green Version] - Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ.
**2000**, 34, 1001–1027. [Google Scholar] [CrossRef] - Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos.
**2010**, 115. [Google Scholar] [CrossRef] [Green Version] - Hennemuth, B.; Lammert, A. Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter. Bound.-Layer Meteorol.
**2006**, 120, 181–200. [Google Scholar] [CrossRef] - Scipión, D.E.; Chilson, P.B.; Fedorovich, E.; Palmer, R.D. Evaluation of an LES-Based Wind Profiler Simulator for Observations of a Daytime Atmospheric Convective Boundary Layer. J. Atmos. Ocean. Technol.
**2008**, 25, 1423–1436. [Google Scholar] [CrossRef] [Green Version] - Scipión, D.; Palmer, R.; Chilson, P.; Fedorovich, E.; Botnick, A. Retrieval of convective boundary layer wind field statistics from radar profiler measurements in conjunction with large eddy simulation. Meteorol. Z.
**2009**, 18, 175–187. [Google Scholar] [CrossRef] - Beyrich, F. Mixing height estimation from sodar data—A critical discussion ☆. Atmos. Environ.
**1997**, 31, 3941–3953. [Google Scholar] [CrossRef] - Luo, T.; Yuan, R.; Wang, Z. Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmos. Meas. Tech.
**2014**, 7, 173–182. [Google Scholar] [CrossRef] [Green Version] - Toledo, D.; Cordoba-Jabonero, C.; Adame, J.A.; Morena, B.D.L.; Gil-Ojeda, M. Estimation of the atmospheric boundary layer height during different atmospheric conditions: A comparison on reliability of several methods applied to lidar measurements. Int. J. Remote Sens.
**2017**, 38, 3203–3218. [Google Scholar] [CrossRef] - Cohn, S.A.; Angevine, W.M. Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars. J. Appl. Meteorol. Climatol.
**2000**, 39, 1233–1247. [Google Scholar] [CrossRef] - Frioud, M.; Mitev, V.; Matthey, R.; Häberli, C.H.; Richner, H.; Werner, R.; Vogt, S. Elevated aerosol stratification above the Rhine Valley under strong anticyclonic conditions. Atmos. Environ.
**2003**, 37, 1785–1797. [Google Scholar] [CrossRef] - Sicard, M.; Pérez, C.; Rocadenbosch, F.; Baldasano, J.M.; García-Vizcaino, D. Mixed-Layer Depth Determination in the Barcelona Coastal Area From Regular Lidar Measurements: Methods, Results and Limitations. Bound.-Layer Meteorol.
**2006**, 119, 135–157. [Google Scholar] [CrossRef] - Couvreux, F.; Guichard, F.; Austin, P.H.; Chen, F. Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002 during the IHOP_2002 Campaign. Mon. Weather Rev.
**2009**, 137, 414–432. [Google Scholar] [CrossRef] - Hennemuth, B.; Linné, H.; Bösenberg, J.; Ertel, K.; Leps, J.P. Vertical profiles of water vapour fluxes in the convective boundary layer, measured by ground-based Differential Absorption Lidar and Heterodyne Doppler Lidar. In Proceedings of the 16th Symposium on Boundary Layers and Turbulence, Portland, OR, USA, 9–13 August 2004. [Google Scholar]
- Renaut, D.; Capitini, R. Boundary-Layer Water Vapor Probing with a Solar-Blind Raman Lidar: Validations, Meteorological Observations and Prospects. J. Atmos. Ocean. Technol.
**1988**, 5, 585–601. [Google Scholar] [CrossRef] - Spinhirne, J.D. Micro Pulse Lidar. IEEE Trans. Geosci. Remote Sens.
**1993**, 31, 48–55. [Google Scholar] [CrossRef] - Campbell, J.R.; Hlavka, D.L.; Spinhirne, J.D.; Turner, D.D.; Flynn, C.J. Operational cloud boundary detection and analysis from micropulse lidar data. In Proceedings of the Eighth ARM Science Team Meeting, Tucson, AZ, USA, 23–27 March 1998; pp. 119–122. [Google Scholar]
- Zhou, T.; Hailing, X.; Jianrong, B.; Zhongwei, H.; Jianping, H.; Jinsen, S.; Beidou, Z.; Wu, Z. Lidar Measurements of Dust Aerosols during Three Field Campaigns in 2010, 2011 and 2012 over Northwestern China. Atmosphere
**2018**, 9, 173. [Google Scholar] [CrossRef] - Xie, H.; Zhou, T.; Fu, Q.; Huang, J.; Huang, Z.; Bi, J.; Shi, J.; Zhang, B.; Ge, J. Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China. Opt. Express
**2017**, 25, 30732–30753. [Google Scholar] [CrossRef] [PubMed] - He, Q.S.; Mao, J.T.; Chen, J.Y.; Hu, Y.Y. Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms. Atmos. Environ.
**2006**, 40, 1064–1077. [Google Scholar] [CrossRef] - Hayden, K.L.; Anlauf, K.G.; Hoff, R.M.; Strapp, J.W.; Bottenheim, J.W.; Wiebe, H.A.; Froude, F.; Martin, J.; Steyn, D.; McKendry, I.G. The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific 93. Atmos. Environ.
**1997**, 31, 2089–2105. [Google Scholar] [CrossRef] - Wulfmeyer, V. Investigation of Turbulent Processes in the Lower Troposphere with Water Vapor DIAL and Radar-RASS. J. Atmos. Sci.
**1998**, 56, 1055–1076. [Google Scholar] [CrossRef] - Steyn, D.G.; Baldi, M.; Hoff, R.M. T’he Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles. J. Atmos. Ocean. Technol.
**1999**, 16, 953–959. [Google Scholar] [CrossRef] - Münkel, C.; Eresmaa, N.; Räsänen, J.; Karppinen, A. Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteorol.
**2007**, 124, 117–128. [Google Scholar] [CrossRef] - Dang, R.J.; Li, H.; Liu, Z.; Yang, Y. Statistical analysis of relationship between daytime lidar-derived planetary boundary layer height and relevant atmospheric variables in the semiarid region in northwest China. Adv. Meteorol.
**2016**, 2016, 1–13. [Google Scholar] [CrossRef] - Brooks, I.M. Finding Boundary Layer Top: Application of Wavelet Covariance Transform to Lidar Backscatter Profiles. J. Atmos. Ocean. Technol.
**2003**, 20, 1092–1105. [Google Scholar] [CrossRef] - Davis, K.J.; Gamage, N.; Hagelberg, C.R.; Kiemle, C.; Lenschow, D.H.; Sullivan, P.P. An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations. J. Atmos. Ocean. Technol.
**2000**, 17, 1455–1468. [Google Scholar] [CrossRef] - Sawyer, V.; Li, Z. Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ.
**2013**, 79, 518–528. [Google Scholar] [CrossRef] - Wang, Z.; Cao, X.; Zhang, L.; Notholt, J.; Zhou, B.; Liu, R.; Zhang, B. Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation. Atmos. Meas. Tech. Discuss.
**2012**, 5, 1965–1972. [Google Scholar] [CrossRef] [Green Version] - Angevine, W.M.; White, A.B.; Avery, S.K. Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteorol.
**1994**, 68, 375–385. [Google Scholar] [CrossRef] - Liu, B.M.; Ma, Y.Y.; Wei, G.; Zhang, M.; Yang, J. Improved Two-wavelength Lidar algorithm for Retrieving Atmospheric Boundary Layer Height. J. Quant. Spectrosc. Radiat. Transf.
**2018**, 224, 55–61. [Google Scholar] [CrossRef] - Haeffelin, M.; Angelini, F.; Morille, Y.; Martucci, G.; Frey, S.; Gobbi, G.P.; Lolli, S.; O’Dowd, C.D.; Sauvage, L.; Xueref-Rémy, I.; et al. Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Bound.-Layer Meteorol.
**2012**, 143, 49–75. [Google Scholar] [CrossRef] - Pal, S.; Haeffelin, M.; Batchvarova, E. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements. J. Geophys. Res.-Atmos.
**2013**, 118, 9277–9295. [Google Scholar] [CrossRef] [Green Version] - Pal, S. Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap. Remote Sens.
**2014**, 6, 8468–8493. [Google Scholar] [CrossRef] [Green Version] - Wang, C.; Shi, H.; Jin, L.; Chen, H.; Wen, H. Measuring boundary-layer height under clear and cloudy conditions using three instruments. Particuology
**2016**, 28, 15–21. [Google Scholar] - Ma, M.J.; Pu, Z.X.; Wang, S.G.; Zhang, Q. Characteristics and Numerical Simulations of Extremely Large Atmospheric Boundary-layer Heights over an Arid Region in North-west China. Bound.-Layer Meteorol.
**2011**, 140, 163–176. [Google Scholar] [CrossRef] - Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell.
**1986**, 6, 679–698. [Google Scholar] [CrossRef] - Schween, J.H.; Hirsikko, A.; Löhnert, U.; Crewell, S. Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech.
**2014**, 7, 4275. [Google Scholar] [CrossRef] [Green Version] - Morille, Y.; Haeffelin, M.; Drobinski, P.; Pelon, J.J. STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data. J. Atmos. Ocean. Technol.
**2007**, 24, 761–775. [Google Scholar] [CrossRef] [Green Version] - Cimini, D.; Angelis, F.D.; Dupont, J.C.; Pal, S.; Haeffelin, M. Mixing layer height retrievals by multichannel microwave radiometer observations. Atmos. Meas. Tech. Discuss.
**2013**, 6, 2941–2951. [Google Scholar] [CrossRef] - Li, H.; Yang, Y.; Hu, X.-M.; Huang, Z.W.; Wang, G.Y.; Zhang, B.D. Application of Convective Condensation Level Limiter in Convective Boundary Layer Height Retrieval Based on Lidar Data. Atmosphere
**2017**, 8, 79. [Google Scholar] [CrossRef] - Reuder, J.; Båserud, L.; Jonassen, M.O.; Kral, S.T.; Müller, M. Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign. Atmos. Meas. Techn.
**2016**, 9, 2675–2688. [Google Scholar] - SACOL Science Team; Dang, R.J.; Yang, Y. Micro-Pulse Lidar Data and Elevation Data. Available online: https://data.mendeley.com/submissions/ees/edit/tgc39sk74k?submission_id=ATMENV_25544token=c0659ba0-df72-43fa-8b67-8d0c69ebb5f5 (accessed on 28 December 2018).
- Li, H.; Yang, Y.; Hu, X.M.; Huang, Z.; Wang, G.; Zhang, B.; Zhang, T. Evaluation of retrieval methods of daytime convective boundary layer height based on Lidar data. J. Geophys. Res. Atmos.
**2017**, 122, 4578–4593. [Google Scholar] [CrossRef] - Osborne, S.R.; Johnson, D.W.; Wood, R.; Bandy, B.J.; Andreae, M.O.; O’Dowd, C.D.; Glantz, P.; Kevin, J.N.; Christoph, G.; Rudolph, J.; et al. Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus Ser. B-Chem. Phys. Meteorol.
**2000**, 52, 375–400. [Google Scholar] [CrossRef] - Nicholls, S. The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Q. J. R. Meteorol. Soc.
**2010**, 110, 783–820. [Google Scholar] [CrossRef] [Green Version] - Stanković, R.S.; Falkowski, B.J. The Haar wavelet transform: Its status and achievements. Comput. Electr. Eng.
**2003**, 29, 25–44. [Google Scholar] [CrossRef] [Green Version] - Gamage, N.; Hagelberg, C. Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms. J. Atmos. Sci.
**1993**, 50, 750–756. [Google Scholar] [CrossRef] - Eberhard, W.L. Cloud Signals from Lidar and Rotating Beam Ceilometer Compared with Pilot Ceiling. J. Atmos. Ocean. Technol.
**1986**, 3, 499–512. [Google Scholar] [CrossRef] [Green Version] - Wang, Z.; Sassen, K. Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. J. Appl. Meteorol.
**2001**, 40, 1665–1683. [Google Scholar] [CrossRef] - Garratt, J.R. Review: The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1992; pp. 89–134. [Google Scholar]
- Tao, S. Error Analyses for Temperature of L Band Radiosonde. Meteorological
**2006**, 32, 46–51. [Google Scholar] - Bian, J.; Vömel, H.; Duan, Y.; Xuan, Y.; Lü, D. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv. Atmos. Sci.
**2011**, 28, 139–146. [Google Scholar] [CrossRef] - Piironen, A.K.; Eloranta, E.W. Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data. J. Geophys. Res. Atmos.
**1995**, 100, 25569–25576. [Google Scholar] [CrossRef] [Green Version] - Granados-Muñoz, M.J.; Navas-Guzmán, F.; Bravo-Aranda, J.A.; Guerrero-Rascado, J.L.; Lyamani, H.; Fernández-Gálvez, J.; Alados-Arboledas, L. Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain. J. Geophys. Res. Atmos.
**2012**, 117. [Google Scholar] [CrossRef] [Green Version] - Rogers, D.P.; Korain, D. Radiative Transfer and Turbulence in the Cloud-topped Marine Atmospheric Boundary Layer. J. Atmos. Sci.
**1992**, 49, 1473–1486. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) A normalized relative backscatter (NRB) profile (left) and the shape of the Haar wavelet, (

**b**) the resulted covariance transform, ${w}_{f}$ as $\Delta h=600$.

**Figure 2.**(

**a**) An idealized backscatter profile, and (

**b**) a real case for the curve fitting procedure.

**Figure 3.**Major steps for determining the top limiter to eliminate the cloud effect on atmosphere boundary layer height (ABLH) retrieval in the new technique.

**Figure 4.**Vertical distributions of normalized relative lidar backscatter signal (NRB) (the first column), relative increase in NRB (the second column), gradient of NRB with the determined top limiter (the third column), and the gradient of NRB only below the lowest cloud layer (the last column) on typical situations: (

**a**) Cloud-free, observed at 14:15 local standard time (LST), 09 June 2007; (

**b**) one cloud layer is observed at 10:15 LST, 09 June 2007; (

**c**,

**d**) more than one cloud layers are observed, the lowest-altitude cloud in (

**c**) (at 13:45 LST, 28 October 2007) is decoupled from the ABL while in (

**d**) (at 10:15 LST, 28 October 2007) is within the ABL.

**Figure 5.**Vertical profiles of (

**a**) potential temperature (theta) and specific humidity (q) at Yuzhong site, (

**b**) lidar NRB at SACOL (Semi-Arid Climate observatory and Laboratory). The ABLH determined using different methods are marked in each panel. The profile was observed at 12:00 UTC on 17 January 2011 (In cloud-free condition).

**Figure 6.**Similar to Figure 5, but for a cloudy case (12:00 UTC on 3 September 2010). Vertical profiles of (

**a**) potential temperature (theta) and specific humidity (q) at Yuzhong site, (

**b**) or (

**c**) lidar NRB at SACOL, the ABLH retrieved by the Haar wavelet method (HM) and curve fitting method (CFM) (

**b**) directly, (

**c**) below the determined top limiter.

**Figure 7.**Comparison between radiosonde-determined (vertical coordinate) and lidar measurement (horizontal coordinate) of ABLH by HM (

**a**) or CFM (

**b**) on 41 cases in cloud-free situations. The correlation coefficients are represented by R. The black solid line is the 1:1 line.

**Figure 8.**Similar to Figure 7, but in cloudy situations. The blue open dots represent the comparison results of ABLH determined by theta gradient (vertical coordinate) and determined by HM (

**a**) or CFM (

**b**) (horizon coordinate) without height limitation, the red stars indicate the comparison results after the top limiter is given for HM and CFM. R represents the correlation coefficients, blue represents no top limiter, and red represents with the top limiter.

**Figure 9.**Lidar measurements of ABLH over SACOL on 28 July 2007. (

**a**) Time-height cross-section of the NRB, red solid line is the determined top altitude limiter, (

**b**) ABLH determined directly from the HM and CFM, (

**c**) ABLH determined from the HM and CFM below the top limiter. (

**d**) Diurnal cycles of buoyancy production and shear production for ground-layer turbulent kinetic energy (TKE), (

**e**) time-height cross-section of equivalent potential temperature (${\theta}_{e}$).

**Figure 10.**Same as in Figure 9, but on 9 June 2007.

**Figure 11.**Same as in Figure 9, but on 28 October 2007.

**Figure 12.**Same as in Figure 9, but on 12 June 2007. The radiometrics profiling radiometer data quality were seriously affected by clouds and there was no equivalent potential temperature data available.

**Table 1.**Correlation coefficients (R), absolute height differences (mean and standard deviation (std) in km) between ABLH determined by theta gradient and by the Haar wavelet covariance transform method (HM) or curve fitting method (CFM) in different situations, as well as mean value of relative absolute differences relative to theta-gradient-determined ABLH (rd, in 100%).

Situations | Method | R | mean | std | rd |
---|---|---|---|---|---|

Cloud-free situation | HM | 0.96 | 0.14 | 0.11 | 10.5 |

CFM | 0.94 | 0.17 | 0.13 | 12.3 | |

Cloudy situation (without top limiter) | HM | 0.09 | 0.83 | 0.90 | 66.1 |

CFM | 0.11 | 0.67 | 0.64 | 53.7 | |

Cloudy situation (with top limiter) | HM | 0.74 | 0.28 | 0.24 | 22.3 |

CFM | 0.79 | 0.22 | 0.18 | 17.2 |

**Table 2.**Correlation coefficients (R) and absolute height differences (mean and standard deviation (std) in km) between ABLH retrieved by HM and CFM based on lidar data of four selected cases.

Date | R | mean | std |
---|---|---|---|

2007.07.28 | 0.998 | 0.25 | 0.21 |

2007.06.09 | 0.993 | 0.32 | 0.37 |

2007.10.28 | 0.993 | 0.13 | 0.22 |

2007.06.12 | 0.997 | 0.16 | 0.15 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dang, R.; Yang, Y.; Li, H.; Hu, X.-M.; Wang, Z.; Huang, Z.; Zhou, T.; Zhang, T.
Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar. *Remote Sens.* **2019**, *11*, 263.
https://doi.org/10.3390/rs11030263

**AMA Style**

Dang R, Yang Y, Li H, Hu X-M, Wang Z, Huang Z, Zhou T, Zhang T.
Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar. *Remote Sensing*. 2019; 11(3):263.
https://doi.org/10.3390/rs11030263

**Chicago/Turabian Style**

Dang, Ruijun, Yi Yang, Hong Li, Xiao-Ming Hu, Zhiting Wang, Zhongwei Huang, Tian Zhou, and Tiejun Zhang.
2019. "Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar" *Remote Sensing* 11, no. 3: 263.
https://doi.org/10.3390/rs11030263