Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Algorithm to Analyse LAI Trends
2.4. Validation of the Algorithm
3. Results
3.1. LAI Trends
3.2. Validation
4. Discussion
4.1. Potential Drivers of Forest Degradation
4.2. Methodological Approach
4.3. Potential Sources of Validation Uncertainty
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, S.; Sathaye, J.; Cannell, M.; Kauppi, P.E. Mitigation of carbon emissions to the atmosphere by forest management. Commonw. For. Rev. 1996, 75, 80–91. [Google Scholar]
- Chazdon, R.L.; Brancalion, P.H.S.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef]
- Schoene, D.; Killmann, W.; von Lupke, H.L.M. Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries; Food and Agriculture Organization: Rome, Italy, 2007; Volume 5. [Google Scholar]
- Strahler, A.; Muchoney, D.; Borak, D.J.; Fried, M.; Gopal, S.; Lambin, E.; Moody, A. MODIS land cover product: Algorithm theoretical basis document. Version 5.0. In MODIS Documentation; Boston University: Boston, MA, USA, 1999. [Google Scholar]
- ITTO. Revised ITTO Criteria and Indicators for the Sustainable Management of Tropical Forests Including Reporting Format. ITTO Policy Development Series No. 15; ITTO: Yokohama, Japan, 2005; ISBN 4 902045 20 6. [Google Scholar]
- UNEP/CBD/SBSTTA. Review of the Status and Trends of, and Major Threats to, the Forest Biological Diversity, Prepared by the Ad Hoc Technical Expert Group on Forest Biological Diversity; UNEP: Nairobi, Kenya; Earthprint: Cheltenham, UK, 2001; pp. 1–152. [Google Scholar]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K.; et al. Definitions and Methodological Options to Inventory Emissions from Direct Human-Induced Degradation of Forests and Devegetation of Other Vegetation Types; National Greenhouse Gas Inventories Programme, Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2003. [Google Scholar]
- FAO. Global Forest Resources Assessment 2005. Main Report; Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Sasaki, N.; Putz, F.E. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv. Lett. 2009, 2, 226–232. [Google Scholar] [CrossRef]
- Shoch, D.; Eaton, J.; Settelmyer, S. Project Developer’s Guidebook to VCS REDD Methodologies; Conservation International: Virginia, UK, 2013; Version 2. [Google Scholar]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote Sens. Environ. 2005, 99, 462–470. [Google Scholar] [CrossRef]
- Xin, Q.; Olofsson, P.; Zhu, Z.; Tan, B.; Woodcock, C.E. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. Environ. 2013, 135, 234–247. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Owsley, B.C.; Julian, J.P. Disturbance analyses of forests and grasslands with MODIS and Landsat in New Zealand. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 42–54. [Google Scholar] [CrossRef]
- Tran, T.V.; de Beurs, K.M.; Julian, J.P. Monitoring forest disturbances in Southeast Oklahoma using Landsat and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 42–52. [Google Scholar] [CrossRef]
- Gao, Y.; Ghilardi, A.; Paneque-Galvez, J.; Skutsch, M.; Mas, J.F. Validation of MODIS Vegetation Continuous Fields for monitoring deforestation and forest degradation: Two cases in Mexico. Geocarto Int. 2015, 31, 1019–1031. [Google Scholar] [CrossRef]
- Hammer, D.; Kraft, R.; Wheeler, D. Alerts of forest disturbance from MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 1–9. [Google Scholar] [CrossRef]
- Vandecar, K.L.; Lawrence, D.; Richards, D.; Schneider, L.; Rogan, J.; Schmook, B.; Wilbur, H. High Mortality for Rare Species Following Hurricane Disturbance in the Southern Yucatán. Biotropica 2011, 43, 676–684. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Kennedy, R.E.; Yang, Z.; Braaten, J.; Krankina, O.N.; Friedl, M.A. Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sens. Environ. 2014, 151, 114–123. [Google Scholar] [CrossRef]
- Hashim, M.; Pour, A.B.; Wei, C.K. Comparison of ETM+ and MODIS Data for Tropical Forest Degradation Monitoring in the Peninsular Malaysia. J. Indian Soc. Remote Sens. 2014, 42, 383–396. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Heinsch, F.A.; Running, S.W. A new satellite-based methodology for continental-scale disturbance detection. Ecol. Appl. 2007, 17, 235–250. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. Testing a MODIS Global Disturbance Index across North America. Remote Sens. Environ. 2009, 113, 2103–2117. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; Iwanicka, D. Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations. Remote Sens. Environ. 2009, 113, 1250–1261. [Google Scholar] [CrossRef]
- Pouliot, D.; Latifovic, R.; Fernandes, R.; Olthof, I. Evaluation of annual forest disturbance monitoring using a static decision tree approach and 250 m MODIS data. Remote Sens. Environ. 2009, 113, 1749–1759. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Loboda, T.V.; Zhang, Z.; O’Neal, K.J.; Sun, G.; Csiszar, I.A.; Shugart, H.H.; Sherman, N.J. Reconstructing disturbance history using satellite-based assessment of the distribution of land cover in the Russian Far East. Remote Sens. Environ. 2012, 118, 241–248. [Google Scholar] [CrossRef]
- Guindon, L.; Bernier, P.Y.; Beaudoin, A.; Pouliot, D.; Villemaire, P.; Hall, R.J.; Latifovic, R.; St-Amant, R. Annual mapping of large forest disturbances across Canada’s forests using 250 m MODIS imagery from 2000 to 2011. Can. J. For. Res. 2014, 44, 1545–1554. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Schmidt, M.; Lucas, R.; Bunting, P.; Verbesselt, J.; Armston, J. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens. Environ. 2015, 158, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Jacquin, A.; Sheeren, D.; Lacombe, J.P. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 3–10. [Google Scholar] [CrossRef]
- Schucknecht, A.; Erasmi, S.; Niemeyer, I.; Matschullat, J. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur. J. Remote Sens. 2013, 46, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Dokumentov, A.; Hyndman, R.J. STR: A Seasonal-Trend Decomposition Procedure Based on Regression; Monash University: Melbourne, Australia, 2015; p. 23. [Google Scholar]
- CONAFOR. National Forest and Soils Inventory Dataset, 2004–2017; CONAFOR: Zapopan, Mexico, 2019. [Google Scholar]
- Skutsch, M.; Simon, C.; Velazquez, A.; Fernández, J.C. Rights to carbon and payments for services rendered under REDD+: Options for the case of Mexico. Glob. Environ. Chang. 2013, 23, 813–825. [Google Scholar] [CrossRef]
- Klooster, D.; Masera, O. Community forest management in Mexico: Carbon mitigation and biodiversity conservation through rural development. Glob. Environ. Chang. 2000, 10, 259–272. [Google Scholar] [CrossRef]
- Morales-Barquero, L.; Skutsch, M.; Jardel-Peláez, E.J.; Ghilardi, A.; Kleinn, C.; Healey, J.R. Operationalizing the definition of forest degradation for REDD+, with application to Mexico. Forests 2014, 5, 1653–1681. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Wang, J.; Blanco-Correa, M. Mapping disturbances in a mangrove forest using multi-date landsat TM imagery. Environ. Manag. 2001, 27, 763–776. [Google Scholar] [CrossRef]
- Brower, L.P.; Castilleja, G.; Peralta, A.; Lopez-garcia, J.; Bojorquez-tapia, L.; Diaz, S.; Melgarejo, D.; Missrie, M.; Melgarejo, D.; Missrie, M. Quantitative Changes in Forest Quality in a Principal Overwintering Area of the Monarch Butterfly in Mexico, 1971–1999. Conserv. Biol. 2002, 16, 346–359. [Google Scholar] [CrossRef]
- Vidal, O.; López-García, J.; Rendón-Salinas, E. Trends in Deforestation and Forest Degradation after a Decade of Monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 2014, 28, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Romero-Sanchez, M.E.; Ponce-Hernandez, R. Assessing and monitoring forest degradation in a deciduous tropical forest in Mexico via remote sensing indicators. Forests 2017, 8, 302. [Google Scholar] [CrossRef]
- INEGI. Land Use and Vegetation Map, Serie Land Use and Vegetation Map, Serie VI (2014), Scale 1: 250,000; National Institute of Statistics and Geography: Aguascalian, Mexico, 2017; Available online: https://www.inegi.org.mx/temas/usosuelo/default.html#Descargas (accessed on 23 October 2019).
- GFS Global Forecast System (GFS) | National Centers for Environmental Information (NCEI) Formerly Known as National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-data-access-matrix (accessed on 19 September 2019).
- Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation of MODIS LAI/FPAR product collection 6. Part 2: Validation and intercomparison. Remote Sens. 2016, 8, 460. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res. Atmos. 1998, 103, 32239–32256. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.L.; Humes, K.S.; Hudak, A.T.; Vierling, L.A.; Delmelle, E. Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest. Remote Sens. Environ. 2011, 115, 3625–3639. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Huang, D.; Tan, B.; Stroeve, J.C.; Shabanov, N.V.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000–2005. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1829–1841. [Google Scholar] [CrossRef]
- Harvey, A.C.; Todd, P.H.J. Forecasting economic time series with structural and box-jenkins models: A case study. J. Bus. Econ. Stat. 1983, 1, 299–307. [Google Scholar]
- Harvey, A.C. Trends and cycles in macroeconomic time series. J. Bus. Econ. Stat. 1985, 3, 216–227. [Google Scholar]
- Harvey, A.C.; Peters, S. Estimation procedures for structural time series models. J. Forecast. 1990, 9, 89–108. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Dokumentov, A.; Hyndman, R.J. stR: STR Decomposition. R Package Version 0.4. Available online: https://cran.r-project.org/package=stR (accessed on 19 September 2019).
- R Core Team. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 19 September 2019).
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Helsel, D.R.; Frans, L.M. Regional Kendall test for trend. Environ. Sci. Technol. 2006, 40, 4066–4073. [Google Scholar] [CrossRef] [PubMed]
- Bartels, R. The rank version of von Neumann’s ratio test for randomness. J. Am. Stat. Assoc. 1982, 77, 40–46. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial. Mathematics 1950, 392, 387–392. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 751. [Google Scholar]
- Patakamuri, S.K.; O’Brien, N. Package “modifiedmk” Title Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests. R Package Version 1.3.0. Available online: https://cran.r-project.org/package=modifiedmk (accessed on 19 September 2019).
- INEGI. Land Use and Vegetation Map, Serie III (2002), Scale 1: 250,000; National Institute of Statistics and Geography: Aguascalian, Mexico, 2005; Available online: https://www.inegi.org.mx/temas/usosuelo/default.html#Descargas (accessed on 23 October 2019).
- Hietz, P.; Buchberger, G.; Winkler, M. Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 2006, 12, 103–112. [Google Scholar]
- SEMARNAT. Manual of Forest Health; Secretariat of Environment and Natural Resources: Mexico City, Mexico, 2007; Available online: http://www.conafor.gob.mx:8080/documentos/docs/15/810Manual%20de%20sanidad%20forestal.pdf (accessed on 23 October 2019).
- Domínguez, J. Revisión histórica de las sequías en México: De la explicación divina a la incorporación de la ciencia. Tecnol. Y Ciencias Del Agua 2016, 7, 77–93. [Google Scholar]
- Metternicht, G.; Zinck, J.A.; Blanco, P.D.; Del Valle, H.F. Remote sensing of land degradation: Experiences from Latin America and the Caribbean. J. Environ. Qual. 2010, 39, 42–61. [Google Scholar] [CrossRef]
Condition | Trees | Weight | Proportion × Weight | Health Index (Addition) | |
---|---|---|---|---|---|
No. | Proportion | ||||
Stump | 0 | 0.00 | 1.00 | 0.00 | 5.07 |
Dead-standing | 4 | 0.03 | 2.00 | 0.06 | |
Very poor or low vigor | 4 | 0.03 | 3.00 | 0.09 | |
Poor vigor | 9 | 0.07 | 4.00 | 0.27 | |
Moderate vigor | 0 | 0.00 | 4.50 | 0.00 | |
Good vigor | 78 | 0.59 | 5.00 | 2.93 | |
Maximum or high vigor | 38 | 0.29 | 6.00 | 1.71 |
Conglomerate ID | Health Index per NFSI | Sign of the Difference | Trend | Magnitude | Trend Analysis Classification | |||
---|---|---|---|---|---|---|---|---|
A) 2004–2009 | B) 2009–2014 | C) 2014–2019 | B − A | C − B | ||||
35110 | 3.80 | 4.50 | 3.60 | + | - | None | ---- | No trend |
44140 | 3.30 | 4.30 | 5.50 | + | + | Positive | ---- | Positive trend |
38822 | 4.70 | 4.60 | 4.40 | − | − | Negative | −0.15 | Low degradation |
54050 | 5.50 | 4.50 | 2.00 | − | − | Negative | −1.75 | Moderate degradation |
53937 | 5.00 | 3.00 | 1.20 | − | − | Negative | −1.90 | High degradation |
Trend Analysis Classes | Reference NFSI Data | ||||||||
---|---|---|---|---|---|---|---|---|---|
Degradation | Positive Trend | No Trend | Total | User’s Accuracy | |||||
High | Moderate | Low | |||||||
MODIS LAI data | Degradation | High | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
Moderate | 0 | 5 | 0 | 0 | 6 | 11 | 0.45 | ||
Low | 0 | 0 | 4 | 1 | 1 | 6 | 0.67 | ||
Positive trend | 0 | 9 | 0 | 14 | 28 | 51 | 0.27 | ||
No trend | 1 | 12 | 4 | 3 | 88 | 108 | 0.81 | ||
Total | 2 | 26 | 8 | 18 | 123 | 177 | |||
Producer’s accuracy | 0.50 | 0.19 | 0.50 | 0.78 | 0.72 | 0.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reygadas, Y.; Jensen, J.L.R.; Moisen, G.G. Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sens. 2019, 11, 2503. https://doi.org/10.3390/rs11212503
Reygadas Y, Jensen JLR, Moisen GG. Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sensing. 2019; 11(21):2503. https://doi.org/10.3390/rs11212503
Chicago/Turabian StyleReygadas, Yunuen, Jennifer L. R. Jensen, and Gretchen G. Moisen. 2019. "Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico" Remote Sensing 11, no. 21: 2503. https://doi.org/10.3390/rs11212503
APA StyleReygadas, Y., Jensen, J. L. R., & Moisen, G. G. (2019). Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sensing, 11(21), 2503. https://doi.org/10.3390/rs11212503