Remote Sensing of Urban Forests
Abstract
:1. Introduction
2. Overview of Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanesi, G.; Gallis, C.; Kasperidus, H.D. Urban Forests and Their Ecosystem Services in Relation to Human Health. In Forests, Trees and Human Health; Nilsson, K., Sangster, M., Gallis, C., Hartig, T., de Vries, S., Seeland, K., Schipperijn, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 23–40. ISBN 978-90-481-9806-1. [Google Scholar]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. Earth Environ. 2013, 37, 2–28. [Google Scholar] [CrossRef]
- Pesola, L.; Cheng, X.; Sanesi, G.; Colangelo, G.; Elia, M.; Lafortezza, R. Linking above-ground biomass and biodiversity to stand development in urban forest areas: A case study in Northern Italy. Landsc. Urban Plan. 2017, 157, 90–97. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Van der Jagt, A.P.N.; Smith, M.; Ambrose-Oji, B.; Konijnendijk, C.C.; Giannico, V.; Haase, D.; Lafortezza, R.; Nastran, M.; Pintar, M.; Železnikar, Š.; et al. Co-creating urban green infrastructure connecting people and nature: A guiding framework and approach. J. Environ. Manag. 2019, 233, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Lafortezza, R.; Giannico, V. Combining high-resolution images and LiDAR data to model ecosystem services perception in compact urban systems. Ecol. Indic. 2019, 96, 87–98. [Google Scholar] [CrossRef]
- Giannico, V.; Lafortezza, R.; John, R.; Sanesi, G.; Pesola, L.; Chen, J. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR. Remote Sens. 2016, 8, 339. [Google Scholar] [CrossRef]
- Choi, H.; Song, Y.; Jang, Y. Urban Forest Growth and Gap Dynamics Detected by Yearly Repeated Airborne Light Detection and Ranging (LiDAR): A Case Study of Cheonan, South Korea. Remote Sens. 2019, 11, 1551. [Google Scholar] [CrossRef]
- Deng, J.; Huang, Y.; Chen, B.; Tong, C.; Liu, P.; Wang, H.; Hong, Y. A Methodology to Monitor Urban Expansion and Green Space Change Using a Time Series of Multi-Sensor SPOT and Sentinel-2A Images. Remote Sens. 2019, 11, 1230. [Google Scholar] [CrossRef]
- Stubbings, P.; Peskett, J.; Rowe, F.; Arribas-Bel, D. A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning. Remote Sens. 2019, 11, 1395. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Park, H.; Zhou, X.; Yang, X.; Fan, P.; Shao, C.; Ouyang, Z. Spatial Accessibility of Urban Forests in the Pearl River Delta (PRD), China. Remote Sens. 2019, 11, 667. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, M. A New Algorithm for MLS-Based DBH Mensuration and Its Preliminary Validation in an Urban Boreal Forest: Aiming at One Cornerstone of Allometry-Based Forest Biometrics. Remote Sens. 2018, 10, 749. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote Sensing in Urban Forestry: Recent Applications and Future Directions. Remote Sens. 2019, 11, 1144. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elia, M.; Giannico, V.; Lafortezza, R.; Sanesi, G. Modeling fire ignition patterns in Mediterranean urban interfaces. Stoch. Environ. Res. Risk Assess. 2019, 33, 169–181. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning LiDAR. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1371. [Google Scholar]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Zhao, K.; Suarez, J.C.; Garcia, M.; Hu, T.; Wang, C.; Londo, A. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 2018, 204, 883–897. [Google Scholar] [CrossRef]
- Ugolini, F.; Massetti, L.; Sanesi, G.; Pearlmutter, D. Knowledge transfer between stakeholders in the field of urban forestry and green infrastructure: Results of a European survey. Land Use Policy 2015, 49, 365–381. [Google Scholar] [CrossRef]
- Ugolini, F.; Sanesi, G.; Steidle, A.; Pearlmutter, D. Speaking “Green”: A Worldwide Survey on Collaboration among Stakeholders in Urban Park Design and Management. Forests 2018, 9, 458. [Google Scholar] [CrossRef]
Source | Title | Country | Application(s) | Technique(s) | Data |
---|---|---|---|---|---|
Choi et al. | Urban Forest Growth and Gap Dynamics Detected by Yearly Repeated Airborne Light Detection and Ranging (LiDAR): A Case Study of Cheonan, South Korea | South Korea | Assess annual changes in the tridimensional structure of urban forest canopies | Point cloud height distribution analysis | Airborne Laser Scanning |
Deng et al. | A Methodology to Monitor Urban Expansion and Green Space Change Using a Time Series of Multi-Sensor SPOT and Sentinel-2A Images | China | Monitor urban expansion and green space change | Principal Component Analysis; Iterative Self-Organizing Data Analysis Technique and Maximum Likelihood classifier | SPOT-2, 3, 5 and Sentinel-2A |
Stubbings et al. | A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning | United Kingdom | Measure the quantity of visible vegetation from pedestrians’ point of view (Urban Street Tree Vegetation Index) | Random Forest; Pyramid Scene Parsing Network and a Hierarchical Multilevel Model | Google Street View imagery |
Zhang et al. | Spatial Accessibility of Urban Forests in the Pearl River Delta (PRD), China | China | Measure forest accessibility and explore its relationship with dwellers’ socio-economic condition | Regression analysis | Landsat-derived products (High-Resolution Global Maps of 21st-Century Forest Cover Change [15]) |
Lin and Jiang | Mensuration and Its Preliminary Validation in an Urban Boreal Forest: Aiming at One Cornerstone of Allometry-Based Forest Biometrics | Finland | Estimate diameter at breast height in a complex urban forest | Successive Cone-based Fitting | Mobile Laser Scanning |
Li et al. | Remote Sensing in Urban Forestry: Recent Applications and Future Directions | Multiple countries | Review of remote sensing applications in urban forestry | Various | Various |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanesi, G.; Giannico, V.; Elia, M.; Lafortezza, R. Remote Sensing of Urban Forests. Remote Sens. 2019, 11, 2383. https://doi.org/10.3390/rs11202383
Sanesi G, Giannico V, Elia M, Lafortezza R. Remote Sensing of Urban Forests. Remote Sensing. 2019; 11(20):2383. https://doi.org/10.3390/rs11202383
Chicago/Turabian StyleSanesi, Giovanni, Vincenzo Giannico, Mario Elia, and Raffaele Lafortezza. 2019. "Remote Sensing of Urban Forests" Remote Sensing 11, no. 20: 2383. https://doi.org/10.3390/rs11202383
APA StyleSanesi, G., Giannico, V., Elia, M., & Lafortezza, R. (2019). Remote Sensing of Urban Forests. Remote Sensing, 11(20), 2383. https://doi.org/10.3390/rs11202383