Next Article in Journal
Multi-Channel Weather Radar Echo Extrapolation with Convolutional Recurrent Neural Networks
Next Article in Special Issue
Polarimetric Radar Signatures and Performance of Various Radar Rainfall Estimators during an Extreme Precipitation Event over the Thousand-Island Lake Area in Eastern China
Previous Article in Journal
A Synergetic Analysis of Sentinel-1 and -2 for Mapping Historical Landslides Using Object-Oriented Random Forest in the Hyrcanian Forests
Previous Article in Special Issue
Dissecting Performances of PERSIANN-CDR Precipitation Product over Huai River Basin, China
Open AccessFeature PaperReview

Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate

CNR-ISAC, via Gobetti 101, I-40129 Bologna, Italy
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(19), 2301; https://doi.org/10.3390/rs11192301
Received: 13 September 2019 / Revised: 27 September 2019 / Accepted: 30 September 2019 / Published: 2 October 2019
(This article belongs to the Special Issue Precipitation and Water Cycle Measurements using Remote Sensing)
The water cycle is the most essential supporting physical mechanism ensuring the existence of life on Earth. Its components encompass the atmosphere, land, and oceans. The cycle is composed of evaporation, evapotranspiration, sublimation, water vapor transport, condensation, precipitation, runoff, infiltration and percolation, groundwater flow, and plant uptake. For a correct closure of the global water cycle, observations are needed of all these processes with a global perspective. In particular, precipitation requires continuous monitoring, as it is the most important component of the cycle, especially under changing climatic conditions. Passive and active sensors on board meteorological and environmental satellites now make reasonably complete data available that allow better measurements of precipitation to be made from space, in order to improve our understanding of the cycle’s acceleration/deceleration under current and projected climate conditions. The article aims to draw an up-to-date picture of the current status of observations of precipitation from space, with an outlook to the near future of the satellite constellation, modeling applications, and water resource management. View Full-Text
Keywords: water cycle; hydrological cycle; precipitation; water resources; climate change; satellite; remote sensing water cycle; hydrological cycle; precipitation; water resources; climate change; satellite; remote sensing
Show Figures

Graphical abstract

MDPI and ACS Style

Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop