Influence of Landscape Heterogeneity and Spatial Resolution in Multi-Temporal In Situ and MODIS NDVI Data Proxies for Seasonal GPP Dynamics
Abstract
:1. Introduction
- (i)
- Describe in situ NDVI (NDVIis) seasonal dynamics using Fourier time series modeling and analysis;
- (ii)
- Compare multi-temporal NDVIis time series dynamics derived from radiation measurements using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data (NDVIMD) computed for contrasting spatial scales and biomes;
- (iii)
- Quantify landscape heterogeneity from flux tower footprints;
- (iv)
- Use these approaches to model GPP seasonal dynamics.
2. Materials and Methods
2.1. Derivation of NDVIis from In Situ Radiation Measurements
2.2. MODIS Data and Processing
- (i)
- A single pixel with coordinates matching a flux site (MODIS0.5×0.5: 0.5 × 0.5 km);
- (ii)
- Nine pixels centered around a flux site (MODIS1.5×1.5: 1.5 × 1.5 km);
- (iii)
- Twenty-five pixels centered around a flux site (MODIS2.5×2.5: 2.5 × 2.5 km);
- (iv)
- Forty-nine pixels centered around a flux site (MODIS3.5×3.5: 3.5 × 3.5 km).
2.3. NDVI Time Series Analysis: Fourier Modeling and Fitting
2.4. Development of a Spatial Heterogeneity Indicator (SHI) for Categorical Maps
2.5. Decision Tree Classification
2.6. Quantification of Biome Spatial Heterogeneity Based on a Categorical Map
2.7. Comparison of NDVIis and NDVIMD
2.8. Flux Data and GPP Estimation
3. Results
3.1. Relationship Between NDVIis and NDVIMD across and within Biomes
3.2. Site Level Variation in Relationship Between NDVIis and NDVIMD
3.3. Site Level Seasonal Variability
3.4. Site Heterogeneity Index Application
3.5. GPP Seasonality
4. Discussion
4.1. Trees Density and Spatial Distribution, and Management
4.2. NDVI Seasonal Variability and GPP Seasonality
4.3. Spatial Resolution and Sensors Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churkina, G.; Schimel, D.; Braswell, B.H.; Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 2005, 11, 1777–1787. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Myneni, R.B.; Los, S.O.; Asrar, G. Potential gross primary productivity of terrestrial vegetation from 1982–1990. Geophys. Res. Lett. 1995, 22, 2617–2620. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Peñuelas, J. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Klisch, A.; Mattiuzzi, M.; Vuolo, F. Phenological metrics derived over the european continent from ndvi3g data and modis time series. Remote Sens. 2014, 6, 257–284. [Google Scholar] [CrossRef]
- Ichii, K.; Kondo, M.; Okabe, Y.; Ueyama, M.; Kobayashi, H.; Lee, S.-J.; Saigusa, N.; Zhu, Z.; Myneni, R.B. Recent changes in terrestrial gross primary productivity in asia from 1982 to 2011. Remote Sens. 2013, 5, 6043–6062. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Garrity, S.R.; Bohrer, G.; Maurer, K.D.; Mueller, K.L.; Vogel, C.S.; Curtis, P.S. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 2011, 151, 1741–1752. [Google Scholar] [CrossRef]
- Jenkins, J.P.; Richardson, A.D.; Braswell, B.H.; Ollinger, S.V.; Hollinger, D.Y.; Smith, M.L. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric. For. Meteorol. 2007, 143, 64–79. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M.; et al. Tracking vegetation phenology across diverse north american biomes using phenocam imagery. Sci. Data 2018, 5, 180028. [Google Scholar] [CrossRef] [PubMed]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using phenocam imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef]
- Verma, M.; Friedl, M.A.; Richardson, A.D.; Kiely, G.; Cescatti, A.; Law, B.E.; Wohlfahrt, G.; Gielen, B.; Roupsard, O.; Moors, E.J.; et al. Remote sensing of annual terrestrial gross primary productivity from modis: An assessment using the fluxnet la thuile data set. Biogeosciences 2014, 11, 2185–2200. [Google Scholar] [CrossRef]
- Soudani, K.; Hmimina, G.; Delpierre, N.; Pontailler, J.Y.; Aubinet, M.; Bonal, D.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; et al. Ground-based network of ndvi measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens. Environ. 2012, 123, 234–245. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A.; et al. Evaluation of the potential of modis satellite data to predict vegetation phenology in different biomes: An investigation using ground-based ndvi measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Myneni, R.B. Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agric. For. Meteorol. 1991, 55, 323–344. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in china over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P.; Lagergren, F.; Lindroth, A.; Lindström, J.; Klemedtsson, L.; Kutsch, W.; Eklundh, L. Towards operational remote sensing of forest carbon balance across northern europe. Biogeosciences 2008, 5, 817–832. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships between ndvi, canopy structure, and photosynthesis in three californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Nestola, E.; Calfapietra, C.; Emmerton, A.C.; Wong, Y.C.; Thayer, R.D.; Gamon, A.J. Monitoring grassland seasonal carbon dynamics, by integrating modis ndvi, proximal optical sampling, and eddy covariance measurements. Remote Sens. 2016, 8, 260. [Google Scholar] [CrossRef]
- Ulsig, L.; Nichol, J.C.; Huemmrich, F.K.; Landis, R.D.; Middleton, M.E.; Lyapustin, I.A.; Mammarella, I.; Levula, J.; Porcar-Castell, A. Detecting inter-annual variations in the phenology of evergreen conifers using long-term modis vegetation index time series. Remote Sens. 2017, 9, 49. [Google Scholar] [CrossRef]
- Wang, Y.; Woodcock, C.E.; Buermann, W.; Stenberg, P.; Voipio, P.; Smolander, H.; Häme, T.; Tian, Y.; Hu, J.; Knyazikhin, Y.; et al. Evaluation of the modis lai algorithm at a coniferous forest site in finland. Remote Sens. Environ. 2004, 91, 114–127. [Google Scholar] [CrossRef]
- Glenn, E.; Huete, A.; Nagler, P.; Nelson, S. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Justice, C.; Belward, A.; Morisette, J.; Lewis, P.; Privette, J.; Baret, F. Developments in the ‘validation’ of satellite sensor products for the study of the land surface. Int. J. Remote Sens. 2000, 21, 3383–3390. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Allard, D.; Garrigue, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.; Bohbot, H.; et al. Valeri: A Network of Sites and Methodology for the Validation of Medium Spatial Resolution Land Products. Available online: http://w3.avignon.inra.fr/valeri/documents/VALERI-RSESubmitted.pdf (accessed on 14 March 2019).
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental africa using google earth engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (smts) and automated cropland classification algorithms (accas) for mapping croplands of australia using modis 250-m time-series (2000–2015) data. Int. J. Digit. Earth 2017, 10, 944–977. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.H.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Balzarolo, M.; Vicca, S.; Nguy-Robertson, A.L.; Bonal, D.; Elbers, J.A.; Fu, Y.H.; Grünwald, T.; Horemans, J.A.; Papale, D.; Peñuelas, J.; et al. Matching the phenology of net ecosystem exchange and vegetation indices estimated with modis and fluxnet in-situ observations. Remote Sens. Environ. 2016, 174, 290–300. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Santhana Vannan, S.K.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G.; et al. Intercomparison of modis albedo retrievals and in situ measurements across the global fluxnet network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef]
- Huemmrich, K.F.; Black, T.A.; Jarvis, P.G.; McCaughey, J.H.; Hall, F.G. High temporal resolution ndvi phenology from micrometeorological radiation sensors. J. Geophys. Res. Atmos. 1999, 104, 27935–27944. [Google Scholar] [CrossRef]
- Goudriaan, J.; Van Laar, H. Modelling Potential Crop Growth Processes: Textbook with Exercises; Springer Science & Business Media: Dordrecht, The Netherlands, 1994; Volume 2. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the great plains with erts. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Balzarolo, M.; Anderson, K.; Nichol, C.; Rossini, M.; Vescovo, L.; Arriga, N.; Wohlfahrt, G.; Calvet, J.C.; Carrara, A.; Cerasoli, S.; et al. Ground-based optical measurements at european flux sites: A review of methods, instruments and current controversies. Sensors 2011, 11, 7954–7981. [Google Scholar] [CrossRef]
- Wu, J.; Hobbs, R.J. Key Topics in Landscape Ecology; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Wu, C.; Gonsamo, A.; Gough, C.M.; Chen, J.M.; Xu, S. Modeling growing season phenology in north american forests using seasonal mean vegetation indices from modis. Remote Sens. Environ. 2014, 147, 79–88. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Coursolle, C.; Margolis, H.A.; Barr, A.G.; Black, T.A.; Amiro, B.D.; McCaughey, J.H.; Flanagan, L.B.; Lafleur, P.M.; Roulet, N.T.; Bourque, C.P.A.; et al. Late-summer carbon fluxes from canadian forests and peatlands along an east–west continental transect. Can. J. For. Res. 2006, 36, 783–800. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Eklundh, L.; Hellström, M.; Bärring, L.; Jönsson, P. Annual changes in modis vegetation indices of swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sens. Environ. 2010, 114, 2719–2730. [Google Scholar] [CrossRef]
- Zwiazek, J.; Renault, S.; Croser, C.; Hansen, J.; Beck, E. Biochemical and biophysical changes in relation to cold hardiness. In Conifer Cold Hardiness; Bigras, F., Colombo, S., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 1, pp. 165–186. [Google Scholar]
- Arriga, N.; Rannik, Ü.; Aubinet, M.; Carrara, A.; Vesala, T.; Papale, D. Experimental validation of footprint models for eddy covariance co2 flux measurements above grassland by means of natural and artificial tracers. Agric. For. Meteorol. 2017, 242, 75–84. [Google Scholar] [CrossRef]
Class | Criteria | Description |
---|---|---|
1 | NDVI < 0 | no vegetated area or water body |
2 | 0 ≤ NDVI > 0.12 | bare soil |
3 | 0.12 ≤ NDVI > 0.30 | sparse vegetation |
4 | 0.30 ≤ NDVI > 0.60 | moderate levels of vegetation |
5 | NDVI ≥ 0.60 | dense vegetation |
Homogeneous | Heterogeneous | |
---|---|---|
SUM | 1.00 | 1.09 |
SSQ | 1.02 | 1.21 |
Kurtosis | 9.00 | 0.12 |
SHI | 0.00 | 9.98 |
PFT | Resolution (km × km) | N. obs | CORR (-) | RMSE (Days) | MAPE/75 (Days) | Slope (-) | Y-Int (-) |
---|---|---|---|---|---|---|---|
CRO | 0.5 × 0.5 | 397 | 0.53 * | 0.20 | 0.44 | 0.93 | −0.09 |
1.5 × 1.5 | 374 | 0.42 * | 0.22 | 0.52 | 0.79 | −0.02 | |
2.5 × 2.5 | 382 | 0.42 * | 0.21 | 0.50 | 0.75 | 0.01 | |
3.5 × 3.5 | 390 | 0.44 * | 0.21 | 0.48 | 0.76 | 0.01 | |
DBF | 0.5 × 0.5 | 146 | 0.70 * | 0.10 | 0.20 | 0.9 | 0.09 |
1.5 × 1.5 | 137 | 0.61 * | 0.12 | 0.20 | 0.9 | 0.04 | |
2.5 × 2.5 | 142 | 0.64 * | 0.11 | 0.19 | 0.9 | 0.06 | |
3.5 × 3.5 | 144 | 0.62 * | 0.11 | 0.19 | 0.9 | 0.08 | |
EBF | 0.5 × 0.5 | 13 | 0.01 | 0.18 | 0.49 | 0.2 | 0.67 |
1.5 × 1.5 | 13 | 0.15 | 0.20 | 0.47 | 1.1 | 0.11 | |
2.5 × 2.5 | 13 | 0.14 | 0.16 | 0.45 | 0.8 | 0.27 | |
3.5 × 3.5 | 13 | 0.04 | 0.16 | 0.43 | 0.4 | 0.51 | |
ENF | 0.5 × 0.5 | 280 | 0.15 * | 0.15 | 0.28 | 0.5 | 0.34 |
1.5 × 1.5 | 269 | 0.11 * | 0.14 | 0.28 | 0.4 | 0.37 | |
2.5 × 2.5 | 275 | 0.11 * | 0.13 | 0.27 | 0.4 | 0.38 | |
3.5 × 3.5 | 276 | 0.12 * | 0.13 | 0.26 | 0.4 | 0.39 | |
GRA | 0.5 × 0.5 | 208 | 0.18 * | 0.17 | 0.72 | 0.5 | 0.26 |
1.5 × 1.5 | 198 | 0.12 * | 0.17 | 0.75 | 0.4 | 0.29 | |
2.5 × 2.5 | 204 | 0.13 * | 0.17 | 0.74 | 0.5 | 0.28 | |
3.5 × 3.5 | 207 | 0.15 * | 0.17 | 0.73 | 0.5 | 0.27 | |
OSH | 0.5 × 0.5 | 74 | 0.65 * | 0.11 | 0.39 | 0.9 | 0.04 |
1.5 × 1.5 | 72 | 0.62 * | 0.10 | 0.39 | 0.9 | 0.09 | |
2.5 × 2.5 | 74 | 0.67 * | 0.10 | 0.53 | 0.9 | 0.11 | |
3.5 × 3.5 | 74 | 0.68 * | 0.10 | 0.48 | 0.9 | 0.09 | |
WSA | 0.5 × 0.5 | 118 | 0.54 * | 0.04 | 0.46 | 0.4 | 0.10 |
1.5 × 1.5 | 118 | 0.48 * | 0.03 | 0.58 | 0.3 | 0.09 | |
2.5 × 2.5 | 118 | 0.50 * | 0.04 | 0.56 | 0.3 | 0.09 | |
3.5 × 3.5 | 118 | 0.51 * | 0.04 | 0.54 | 0.4 | 0.09 |
Site ID | PFT | Average*1000 | Stdev | Max | Min | Amplitude |
---|---|---|---|---|---|---|
DE-Geb | CRO | 0.002 | 0.004 | 0.009 | −0.010 | 0.015 |
DE-Kli | CRO | −0.019 | 0.007 | 0.017 | −0.014 | 0.025 |
US-ARM | CRO | 0.008 | 0.003 | 0.008 | −0.007 | 0.013 |
US-Bo1 | CRO | 0.004 | 0.004 | 0.010 | −0.008 | 0.017 |
US-Ne1 | CRO | −0.011 | 0.004 | 0.011 | −0.007 | 0.014 |
US-Ne2 | CRO | 0.004 | 0.003 | 0.007 | −0.006 | 0.016 |
DE-Hai | DBF | −0.002 | 0.003 | 0.008 | −0.007 | 0.012 |
US-Bar | DBF | −0.026 | 0.005 | 0.015 | −0.010 | 0.021 |
US-MOz | DBF | −0.008 | 0.003 | 0.006 | −0.006 | 0.011 |
BR-Sa3 | EBF | −0.001 | 0.004 | 0.004 | −0.005 | 0.017 |
CA-NS5 | ENF | 0.008 | 0.002 | 0.004 | −0.006 | 0.010 |
DE-Tha | ENF | 0.021 | 0.004 | 0.007 | −0.004 | 0.019 |
DE-Wet | ENF | −0.006 | 0.003 | 0.006 | −0.007 | 0.010 |
FI-Hyy | ENF | 0.005 | 0.003 | 0.005 | −0.006 | 0.010 |
NL-Loo | ENF | 0.007 | 0.001 | 0.002 | −0.004 | 0.005 |
DE-Meh | GRA | −0.001 | 0.003 | 0.007 | −0.005 | 0.010 |
US-Fpe | GRA | 0.004 | 0.002 | 0.006 | −0.004 | 0.008 |
US-Goo | GRA | 0.005 | 0.004 | 0.010 | −0.006 | 0.011 |
CA-NS6 | OSH | 0.004 | 0.006 | 0.013 | −0.009 | 0.020 |
CA-NS7 | OSH | 0.021 | 0.008 | 0.015 | −0.017 | 0.031 |
US-SRM | WSA | 0.003 | 0.002 | 0.003 | −0.003 | 0.005 |
Site ID | Biome | SSQ | Kurtosis | SHI |
---|---|---|---|---|
DE-Geb | CRO | 1.0201 | 8.697 | 0.004 |
DE-Kli | CRO | 1.0201 | 8.933 | 0.001 |
US-ARM | CRO | 1.0201 | 7.755 | 0.018 |
US-Bo1 | CRO | 1.0201 | 8.995 | 0.000 |
US-Ne1 | CRO | 1.0201 | 1.342 | 0.628 |
US-Ne2 | CRO | 1.0201 | 0.745 | 1.219 |
DE-Hai | DBF | 1.0201 | 9.000 | 0.000 |
US-Bar | DBF | 1.0201 | 9.000 | 0.000 |
US-MOz | DBF | 1.0201 | 9.000 | 0.000 |
BR-Sa3 | EBF | 1.0201 | 7.822 | 0.017 |
CA-NS5 | ENF | 1.0201 | 9.000 | 0.000 |
DE-Tha | ENF | 1.0201 | 9.000 | 0.000 |
DE-Wet | ENF | 1.0201 | 9.000 | 0.000 |
FI-Hyy | ENF | 1.0201 | 9.000 | 0.000 |
NL-Loo | ENF | 1.0201 | 9.000 | 0.000 |
DE-Meh | GRA | 1.0201 | 8.995 | 0.000 |
US-FPe | GRA | 1.0201 | 8.967 | 0.000 |
US-Goo | GRA | 1.0201 | 8.242 | 0.010 |
CA-NS6 | OSH | 1.0201 | 9.000 | 0.000 |
CA-NS7 | OSH | 1.0201 | 8.977 | 0.000 |
US-SRM | WSA | 1.0201 | 9.000 | 0.000 |
Observations | R2 | RMSE | NMB | Slope | Y-int | R2cv | |
---|---|---|---|---|---|---|---|
n | (-) | (days) | (days) | (-) | (days) | (-) | |
NDVIis | 44 | 0.53 * | 27.78 | −0.009 | −21.28 | 0.80 | 0.53 |
NDVIMD 0.5km × 0.5km | 44 | 0.34 * | 32.90 | −0.010 | −23.30 | 0.74 | 0.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzarolo, M.; Peñuelas, J.; Veroustraete, F. Influence of Landscape Heterogeneity and Spatial Resolution in Multi-Temporal In Situ and MODIS NDVI Data Proxies for Seasonal GPP Dynamics. Remote Sens. 2019, 11, 1656. https://doi.org/10.3390/rs11141656
Balzarolo M, Peñuelas J, Veroustraete F. Influence of Landscape Heterogeneity and Spatial Resolution in Multi-Temporal In Situ and MODIS NDVI Data Proxies for Seasonal GPP Dynamics. Remote Sensing. 2019; 11(14):1656. https://doi.org/10.3390/rs11141656
Chicago/Turabian StyleBalzarolo, Manuela, Josep Peñuelas, and Frank Veroustraete. 2019. "Influence of Landscape Heterogeneity and Spatial Resolution in Multi-Temporal In Situ and MODIS NDVI Data Proxies for Seasonal GPP Dynamics" Remote Sensing 11, no. 14: 1656. https://doi.org/10.3390/rs11141656
APA StyleBalzarolo, M., Peñuelas, J., & Veroustraete, F. (2019). Influence of Landscape Heterogeneity and Spatial Resolution in Multi-Temporal In Situ and MODIS NDVI Data Proxies for Seasonal GPP Dynamics. Remote Sensing, 11(14), 1656. https://doi.org/10.3390/rs11141656