Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data
Abstract
:1. Introduction
2. Radiative Transfer Model—MWIR
- = Total radiance received at the sensor
- = Surface leaving radiance
- = Upwelling emitted atmospheric path radiance
- = Downwelling emitted atmospheric irradiance
- = Scattered path radiance at the sensor
- = Total (diffuse and direct) solar radiance that reaches the surface
- = Atmospheric transmittance—surface-sensor path
- = Surface emissivity
- = Blackbody radiance (Planck’s Function)
- = Surface temperature (K)
- = Total radiance received at the sensor
- = Surface leaving radiance
- = Upwelling emitted atmospheric path radiance
- = Total (diffuse and direct) solar radiance that reaches the surface
- = Atmospheric transmittance—surface-sensor path
- = Surface emissivity
- = Blackbody radiance (Planck’s Function)
- = Surface temperature (K)
- = Surface leaving radiance
- = Upwelling radiance at the sensor for thermally emitted and absorbed radiation
- = Upwelling emitted atmospheric path radiance
- = Total (diffuse and direct) solar radiance that reaches the surface
- = Atmospheric transmittance—surface-sensor path
- = Surface emissivity
- = Blackbody radiance (Planck’s Function)
- = Surface temperature (K)
3. Materials and Methods
3.1. Field Experiment
3.2. Atmospheric Correction and Data Calibration
- = emissivity for pixel
- = radiance measured in for pixel
- = upward radiance
- = atmospheric transmissivity for
- = downward radiance
- = Blackbody radiance (Planck’s Function)
- = highest temperature of the calculated temperatures for pixel
3.3. Detection of Methane Plumes
3.3.1. Wavelets
3.3.2. Matched Filter
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hulley, G.C.; Duren, R.M.; Hopkins, F.M.; Hook, S.J.; Johnson, W.R.; Eng, B.T.; Mihaly, J.M.; Jovanovic, V.M.; Chazanoff, S.L.; Staniszewski, Z.K. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES). Atmos. Meas. Tech. 2016, 9, 2393. [Google Scholar] [CrossRef]
- Scafutto, R.D.M.; de Souza Filho, C.R.; Riley, D.N.; de Oliveira, W.J. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring. Int. J. Appl. Earth Observ. Geoinf. 2018, 64, 311–325. [Google Scholar] [CrossRef]
- Thorpe, A.; Frankenberg, C.; Roberts, D. Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: Application to AVIRIS. Atmos. Meas. Tech. 2014, 7, 491–506. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Nielsen, H.H. The infrared absorption bands of methane. Phys. Rev. 1935, 48, 864. [Google Scholar] [CrossRef]
- Bradley, E.S.; Leifer, I.; Roberts, D.A.; Dennison, P.E.; Washburn, L. Detection of marine methane emissions with AVIRIS band ratios. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Kastek, M.; Piątkowski, T.; Dulski, R.; Chamberland, M.; Lagueux, P.; Farley, V. Method of gas detection applied to infrared hyperspectral sensor. Photonics Lett. Pol. 2012, 4, 146–148. [Google Scholar] [CrossRef]
- Roberts, D.A.; Bradley, E.S.; Cheung, R.; Leifer, I.; Dennison, P.E.; Margolis, J.S. Mapping methane emissions from a marine geological seep source using imaging spectrometry. Remote Sens. Environ. 2010, 114, 592–606. [Google Scholar] [CrossRef]
- Thorpe, A.K.; Roberts, D.A.; Bradley, E.S.; Funk, C.C.; Dennison, P.E.; Leifer, I. High resolution mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter technique and imaging spectrometry. Remote Sens. Environ. 2013, 134, 305–318. [Google Scholar] [CrossRef]
- Tratt, D.M.; Buckland, K.N.; Hall, J.L.; Johnson, P.D.; Keim, E.R.; Leifer, I.; Westberg, K.; Young, S.J. Airborne visualization and quantification of discrete methane sources in the environment. Remote Sens. Environ. 2014, 154, 74–88. [Google Scholar] [CrossRef]
- Hall, J.L.; Boucher, R.H.; Buckland, K.N.; Gutierrez, D.J.; Hackwell, J.A.; Johnson, B.R.; Keim, E.R.; Moreno, N.M.; Ramsey, M.S.; Sivjee, M.G. MAGI: A New High-Performance Airborne Thermal-Infrared Imaging Spectrometer for Earth Science Applications. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5447–5457. [Google Scholar] [CrossRef]
- Griffin, M.K.; Burke, H.-H.K.; Kerekes, J.P. Understanding radiative transfer in the midwave infrared: A precursor to full-spectrum atmospheric compensation. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, Orlando, FL, USA, 12–15 April 2004; Volume 5425, pp. 348–357. [Google Scholar]
- Mushkin, A.; Balick, L.K.; Gillespie, A.R. Extending surface temperature and emissivity retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote Sens. Environ. 2005, 98, 141–151. [Google Scholar] [CrossRef]
- Hackwell, J.A.; Warren, D.W.; Bongiovi, R.P.; Hansel, S.J.; Hayhurst, T.L.; Mabry, D.J.; Sivjee, M.G.; Skinner, J.W. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. In Proceedings of the SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 4–9 August 1996; pp. 102–107. [Google Scholar]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens. Environ. 1994, 47, 345–361. [Google Scholar] [CrossRef]
- Scafutto, R.D.P.M.; de Souza Filho, C.R.; de Oliveira, W.J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 128, 146–157. [Google Scholar] [CrossRef]
- Kirkland, L.; Herr, K.; Keim, E.; Adams, P.; Salisbury, J.; Hackwell, J.; Treiman, A. First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sens. Environ. 2002, 80, 447–459. [Google Scholar] [CrossRef] [Green Version]
- Young, S.J.; Johnson, B.R.; Hackwell, J.A. An in-scene method for atmospheric compensation of thermal hyperspectral data. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, A.R.; Matsunaga, T.; Rokugawa, S.; Hook, S.J. Temperature and emissivity separation from advanced spaceborne thermal emission and reflection radiometer (ASTER) images. In Proceedings of the SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 4–9 August 1996; pp. 82–95. [Google Scholar]
- Hook, S.J.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Li, Z.-L.; Becker, F.; Stoll, M.; Wan, Z. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens. Environ. 1999, 69, 197–214. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries of: Fifth JPL Airborne Earth Science Workshop; JPL Publication: Pasadena, CA, USA, 1995; Volume 1, pp. 23–26. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. The NIST Chemistry WebBook: A chemical data resource on the internet. J. Chem. Eng. Data 2001, 46, 1059–1063. [Google Scholar] [CrossRef]
- Walczak, B.; Bouveresse, E.; Massart, D. Standardization of near-infrared spectra in the wavelet domain. Chemom. Intell. Lab. Syst. 1997, 36, 41–51. [Google Scholar] [CrossRef]
- Xu, Y.; Weaver, J.B.; Healy, D.M.; Lu, J. Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Trans. Image Process. 1994, 3, 747–758. [Google Scholar] [PubMed]
- Zhang, X.; Younan, N.H.; O’Hara, C.G. Wavelet domain statistical hyperspectral soil texture classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 615–618. [Google Scholar] [CrossRef]
- Feng, J.; Rogge, D.; Rivard, B. Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data. Int. J. Appl. Earth Observ. Geoinf. 2018, 64, 340–353. [Google Scholar] [CrossRef]
- Weaver, J.B.; Xu, Y.; Healy, D.; Cromwell, L. Filtering noise from images with wavelet transforms. Magn. Reson. Med. 1991, 21, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Muraki, S. Multiscale volume representation by a DoG wavelet. IEEE Trans. Vis. Comput. Graph. 1995, 1, 109–116. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4138–4152. [Google Scholar] [CrossRef]
- Harsanyi, J.C.; Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef]
- Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 2003, 14, 79–116. [Google Scholar]
- Manolakis, D.; Truslow, E.; Pieper, M.; Cooley, T.; Brueggeman, M. Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms. IEEE Signal Process. Mag. 2014, 31, 24–33. [Google Scholar] [CrossRef]
- Rees, W.G. Physical Principles of Remote Sensing; Cambridge University Press: Cambridge, UK, 2012; p. 247. [Google Scholar]
- Scafutto, R.D.P.M.; Souza Filho, C.R.d.; Rivard, B. Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging. Remote Sens. Environ. 2016, 179, 116–130. [Google Scholar] [CrossRef]
Acquisition Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|
Station | Configuration | Gas Source | Gas Rate (m3/h/SCFH) | Altitude (m) | Time (Local) | Temperature (°C) | Humidity (%) | Wind Speed (km/h) | Wind Direction |
1 | Subsurface | RMOTC (injection) | 6.0/200 | 457 | 10:22:07 | 23.9 | 32 | 14 | SSW |
2C | Subsurface | Cylinder | 2.0/70 | 457 | 10:41:48 | 25.1 | 28 | 13 | SSW |
4 | Subsurface | RMOTC (injection) | 18.0/625 | 457 | 10:48:07 | 25.3 | 27 | 12 | SSW |
33-MX-10 | Surface | RMOTC (injection) | 40.0/1450 | 457 | 10:55:21 | 25.9 | 27 | 14 | SSW |
44-MX-10 | Surface | RMOTC (injection) | 18.0/625 | 457 | 11:07:59 | 26.3 | 24 | 10 | SSW |
5 | Subsurface | RMOTC (injection) | 29.0/1025 | 457 | 11:20:26 | 26.9 | 23 | 11 | SSW |
27-AX-33 | Surface | RMOTC (injection) | 6.0/200 | 457 | 11:33:01 | 27.6 | 21 | 8 | SW |
76-MX-3 | Surface | RMOTC | 28.0/1000 | 457 | 11:39:17 | 27.5 | 22 | 9 | SSW |
1 | Subsurface | RMOTC (injection) | 6.0/200 | 762 | 12:06:13 | 24.0 | 20 | 6 | SSW |
2C | Subsurface | Cylinder | 2.0/70 | 762 | 12:21:07 | 28.3 | 22 | 7 | SSW |
4 | Subsurface | RMOTC (injection) | 18.0/625 | 762 | 12:29:37 | 28.2 | 19 | 6 | SSW |
33-MX-10 | Surface | RMOTC (injection) | 40.0/1450 | 762 | 12:37:31 | 28.6 | 19 | 7 | WNW |
2D | Subsurface | Cylinder | 0.6/20 | 762 | 12:45:19 | 28.5 | 19 | 9 | W |
44-MX-10 | Surface | RMOTC (injection) | 18.0/625 | 762 | 13:08:17 | 28.9 | 19 | 7 | SSW |
Detection | ||||
---|---|---|---|---|
Gas Station | Gas Rate (m3/h/SCFH) | WIND (Speed—Direction) | MWIR | LWIR |
2Db | 0.6/20 | 19 km/h—W | x | ✓ |
2Ca | 2.0/70 | 13 km/h—SSW | x | ✓ |
2Cb | 2.0/70 | 7 km/h—SSW | x | ✓ |
1a | 6.0/200 | 14 km/h—SSW | x | ✓ |
1b | 6.0/200 | 6 km/h—SSW | x | ✓ |
27-AX-33a | 6.0/200 | 8 km/h—SW | x | ✓ |
4a | 18.0/625 | 12 km/h—SSW | x | ✓ |
4b | 18.0/625 | 6 km/h—SSW | x | ✓ |
44-MX-10a | 18.0/625 | 10 km/h—SSW | ✓ | ✓ |
44-MX-1 b | 18.0/625 | 7 km/h—SSW | ✓ | ✓ |
76-MX-3a | 28.0/1000 | 9 km/h—SSW | ✓ | ✓ |
5a | 29.0/1025 | 11 km/h—SSW | ✓ | ✓ |
33-MX-10a | 40.0/1450 | 14 km/h—SSW | x | ✓ |
33-MX-10b | 40.0/1450 | 7 km/h—WNW | ✓ | ✓ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scafutto, R.D.P.M.; De Souza Filho, C.R. Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data. Remote Sens. 2018, 10, 1237. https://doi.org/10.3390/rs10081237
Scafutto RDPM, De Souza Filho CR. Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data. Remote Sensing. 2018; 10(8):1237. https://doi.org/10.3390/rs10081237
Chicago/Turabian StyleScafutto, Rebecca Del’ Papa Moreira, and Carlos Roberto De Souza Filho. 2018. "Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data" Remote Sensing 10, no. 8: 1237. https://doi.org/10.3390/rs10081237
APA StyleScafutto, R. D. P. M., & De Souza Filho, C. R. (2018). Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data. Remote Sensing, 10(8), 1237. https://doi.org/10.3390/rs10081237