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Abstract: Methane (CH4) display spectral features in several regions of the infrared range
(0.75–14 µm), which can be used for the remote mapping of emission sources through the detection of
CH4 plumes from natural seeps and leaks. Applications of hyperspectral remote sensing techniques
for the detection of CH4 in the near and shortwave infrared (NIR-SWIR: 0.75–3 µm) and longwave
infrared (LWIR: 7–14 µm) have been demonstrated in the literature with multiple sensors and
scenarios. However, the acquisition and processing of hyperspectral data in the midwave infrared
(MWIR: 3–5 µm) for this application is rather scarce. Here, a controlled field experiment was
used to evaluate the potential for CH4 plume detection in the MWIR based on hyperspectral data
acquired with the SEBASS airborne sensor. For comparison purposes, LWIR data were also acquired
simultaneously with the same instrument. The experiment included surface and undersurface
emission sources (ground stations), with flow rates ranging between 0.6–40 m3/h. The data collected
in both ranges were sequentially processed using the same methodology. The CH4 plume was
detected, variably, in both datasets. The gas plume was detected in all LWIR images acquired
over nine gas leakage stations. In the MWIR range, the plume was detected in only four stations,
wherein 18 m3/h was the lowest flux sensed. We demonstrate that the interference of target reflectance,
the low contrast between plume and background and a low signal of the CH4 feature in the MWIR at
ambient conditions possibly explain the inferior results observed for this range when compared to
LWIR. Furthermore, we show that the acquisition time and weather conditions, including specific
limits of temperature, humidity, and wind speed, proved critical for plume detection using daytime
MWIR hyperspectral data.
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1. Introduction

Methane (CH4) is the main component of natural gas. The detection of CH4 plumes originated
either from natural seepages or leakages can assist the oil and gas industry in the discovery of new
petroleum plays and environmental monitoring of refineries and pipelines. Hyperspectral remote
sensing data and methods have played an increasingly important role in such applications [1–3].

CH4 has absorption features along the entire infrared spectral range (0.75–14 µm—see Figure S1
in Supplementary Materials). These features result from four main C–H fundamental vibrations, v1,
v2, v3, v4, centered at 2.3 µm, 6.5 µm, 3.3 µm, and 7.7 µm, respectively [4]. v3 (MWIR) and v4 (LWIR)
C–H vibrations show higher intensity when compared to v1 and v2 (NIR-SWIR), due to its asymmetry.
However, despite the higher intensity of the MWIR feature in the calculated CH4 spectra (HITRAN
database parameters: line positions are given in a vacuum and line intensities are defined for a single
molecule per unit volume at 296 K), under real ambient conditions the radiation emitted by CH4 is
much higher in the LWIR range (see Figure S2 in Supplementary Materials).
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The spectral features of CH4 are positioned within atmospheric windows, which allow the
detection of the gas with remote sensors. The interference from atmospheric gases and aerosols
is significantly reduced in these intervals, which simplifies the atmospheric compensation and
potentially allows the extraction of information. Bradley, et al. [5], Kastek, et al. [6], Roberts, et al. [7],
Thorpe, et al. [3] and Thorpe, et al. [8] successfully mapped CH4 plumes using shortwave infrared
(SWIR: 1.1–3 µm) hyperspectral imagery. Tratt, et al. [9], Hall, et al. [10], Hulley, et al. [1], and Scafutto,
et al. [2] proved that a more robust and sensitive detection of CH4 is possible in the longwave infrared
(LWIR: 7–14 µm). An analogous investigation using airborne midwave infrared (MWIR: 3–6 µm)
sensors is lacking due to the limited data available in this spectral range.

The mutual contribution of reflectance and emissivity components in the MWIR hampers the
atmospheric compensation and information extraction in this range. The few approaches found in the
literature for atmospheric compensation of MWIR data [11,12] differ about the weight of reflected solar
radiance (i.e., reflectance) in the model, and the lack of airborne data has not allowed proper testing
of the proposed methodologies so far. Despite the presence of the reflectance, some authors suggest
that the surface emitted radiance account for the most part (60% on average) of the total at-sensor
radiance [11]. Therefore, techniques similar to those used in the processing of LWIR data could also be
applied to MWIR data for the detection of CH4.

The Spatially-Enhanced Broadband Array Spectrograph System, SEBASS [13], manufactured by
the Aerospace Corporation (El Segundo, CA, USA), is one of the few hyperspectral sensors that
covers MWIR (2.5–5.2 µm) and LWIR (7.5–13.5 µm) wavelengths, being able to acquire information
simultaneously in both ranges in a single survey. SEBASS, which operated for almost two decades, was,
and continues to be, one of the best thermal sensors ever designed, especially due to its low NEDT (four
times superior than most sensors; see [12]), high signal to noise ratio (2000:1), and spectral resolution.

Here, for the first time, we test the detection limits of data acquired with the SEBASS sensor in the
MWIR range for mapping CH4 plumes, based on a controlled release field experiment. For comparison
purposes, the same image processing techniques applied to the MWIR were also used to process
SEBASS LWIR data acquired for the same experiment [2], intending to evaluate the efficacy in the
detection of CH4 plumes in both spectral ranges.

2. Radiative Transfer Model—MWIR

Here, we adopt the radiation model proposed by Griffin, et al. [11]. According to the authors,
the MWIR is dominated by absorption bands of atmospheric gases (Figure 1). Since this interval
incorporates both surface reflectance and emissivity from targets in general, the correction of the
data acquired in the MWIR requires two steps: (i) compensation for atmospheric effects, aiming to
estimate the radiance from the surface, and (ii) separation between temperature and emissivity from
the compensated data [11].

The radiation model proposed by Griffin, et al. [11] (Equation (1)), assumes a plane-parallel
atmosphere to calculate the total radiation that reaches the sensor (TOA):

Rs =
(

R↑T + R↑S
)
+ t

{
εSB(TS) + (1− εS)

[
R↓T + R↓S

1− S(1− εS)

]}
, (1)

where Rs is expressed in W/m2-sr-µm, and:

Rs = Total radiance received at the sensor
Rs f c = Surface leaving radiance

R↑T = Upwelling emitted atmospheric path radiance

R↓T = Downwelling emitted atmospheric irradiance

R↑S = Scattered path radiance at the sensor

R↓S = Total (diffuse and direct) solar radiance that reaches the surface
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t = Atmospheric transmittance—surface-sensor path
εS = Surface emissivity
B = Blackbody radiance (Planck’s Function)
TS = Surface temperature (K)
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4.6–5.3 µm. The region covered by the MWIR SEBASS sensor (2.4–5.5 µm) is indicated in the upper 
part of the plot. A.W.: atmospheric window. 
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Figure 1. HITRAN spectral lines (extracted from [14]) for primary absorbing gases in the atmosphere
in the MWIR range (3–5 µm). Areas in grey outline the atmospheric windows between 3–4 µm and
4.6–5.3 µm. The region covered by the MWIR SEBASS sensor (2.4–5.5 µm) is indicated in the upper
part of the plot. A.W.: atmospheric window.

According to Griffin, et al. [11], path reflected solar radiance (R↑S) and surface reflected
downwelling thermal radiance (R↓T) provide around only 1–4% of the TOA at the atmospheric windows
in the MWIR. Assuming that these components are neglectable, three terms remain to be calculated
in Equation (2): path thermal (R↑T : 5–18%), surface emitted (εS: 56–65%) and reflected downwelling
solar irradiance (R↓S: 22–30%), whose respective contributions are indicated in the parentheses.

Rs = R↑T + tεSB(TS) +
t (1− εS) + R↓S

1− Rs f c(1− εS)
(2)

where:

Rs = Total radiance received at the sensor
Rs f c = Surface leaving radiance

R↑T = Upwelling emitted atmospheric path radiance

R↓S = Total (diffuse and direct) solar radiance that reaches the surface
t = Atmospheric transmittance—surface-sensor path
εS = Surface emissivity
B = Blackbody radiance (Planck’s Function)
TS = Surface temperature (K)

In Equation (2), solar reflected (R↓S) and surface leaving radiance (Rs f c) are dependent of the εS.

To overcome this problem, Griffin, et al. [11] assume a constant value to R↓S, which leads to Equation (3)
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for the estimation of surface radiance (Rs f c). According to the authors, the error associated to this
assumption would be in the order of only 2–5% in the total radiance estimated at the 3–4 µm window
of the MWIR:

Rs f c = εS(B[TS]− R↓T) =
RS

T − R↑T − tR↓S
t

(3)

where:

Rs f c = Surface leaving radiance

RS
T = Upwelling radiance at the sensor for thermally emitted and absorbed radiation

R↑T = Upwelling emitted atmospheric path radiance

R↓S = Total (diffuse and direct) solar radiance that reaches the surface
t = Atmospheric transmittance—surface-sensor path
εS = Surface emissivity
B = Blackbody radiance (Planck’s Function)
TS = Surface temperature (K)

Plank’s Law establishes that the values of emissivity and temperature are wavelength (λ)
dependent. This condition implies that the errors associated to the estimated temperature values
increase toward higher wavelengths, that is, the relation T/ε is less susceptible to errors in the MWIR
range than in the LWIR [15].

3. Materials and Methods

3.1. Field Experiment

In August 2010 a controlled field experiment was performed at the former Rocky Mountain
Oilfield Testing Center (RMOTC), located north of Casper, Wyoming (EUA) [2,16]. The experiment
aimed to simulate possible scenarios of seepage and leakage of CH4, from natural and anthropogenic
sources (i.e., pipelines and refineries). Controlled flow rates of gas were released from ground stations
allocated at the surface (simulating anthropogenic sources) and subsurface (simulating natural sources).
The gas flow fluctuated from 0.6 m3/h to 40 m3/h, as described in Table 1.

SEBASS flew over the experimental site on 20 August 2010, acquiring data on MWIR (2.5–5.2 µm)
and LWIR (7.5–13.5 µm) wavelengths, simultaneously. Both sensors have a 1.1 mrad instantaneous
field of view (IFOV), operating with 128 bands (128 cross-track pixels) and spectral resolutions of
0.025 µm in the MWIR, and 0.050 µm in the LWIR. The data were acquired at approximately 457
(1500 ft) and 762 (2500 ft) meters of altitude with spatial resolutions of 0.5 m and 0.84 m, respectively.
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Table 1. Specifications of CH4 leak stations and data acquisition parameters, including: emission rates from each station (m3/h and SCFH), acquisition altitude (m),
acquisition time and meteorological data acquired at RMOTC with a weather station during the experiment. Weather data was collected on 20 August 2010 every five
minutes, from 8:00 a.m. to 2:00 p.m. Temperature, humidity, and wind speed and direction presented in this table corresponds to data collected concomitantly with the
time of the airborne survey over each gas leakage station.

Acquisition Conditions

Station Configuration Gas Source Gas Rate
(m3/h/SCFH)

Altitude
(m) Time (Local) Temperature

(◦C)
Humidity

(%)
Wind Speed

(km/h)
Wind

Direction

1 Subsurface RMOTC (injection) 6.0/200 457 10:22:07 23.9 32 14 SSW
2C Subsurface Cylinder 2.0/70 457 10:41:48 25.1 28 13 SSW
4 Subsurface RMOTC (injection) 18.0/625 457 10:48:07 25.3 27 12 SSW

33-MX-10 Surface RMOTC (injection) 40.0/1450 457 10:55:21 25.9 27 14 SSW
44-MX-10 Surface RMOTC (injection) 18.0/625 457 11:07:59 26.3 24 10 SSW

5 Subsurface RMOTC (injection) 29.0/1025 457 11:20:26 26.9 23 11 SSW
27-AX-33 Surface RMOTC (injection) 6.0/200 457 11:33:01 27.6 21 8 SW
76-MX-3 Surface RMOTC 28.0/1000 457 11:39:17 27.5 22 9 SSW

1 Subsurface RMOTC (injection) 6.0/200 762 12:06:13 24.0 20 6 SSW
2C Subsurface Cylinder 2.0/70 762 12:21:07 28.3 22 7 SSW
4 Subsurface RMOTC (injection) 18.0/625 762 12:29:37 28.2 19 6 SSW

33-MX-10 Surface RMOTC (injection) 40.0/1450 762 12:37:31 28.6 19 7 WNW
2D Subsurface Cylinder 0.6/20 762 12:45:19 28.5 19 9 W

44-MX-10 Surface RMOTC (injection) 18.0/625 762 13:08:17 28.9 19 7 SSW
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3.2. Atmospheric Correction and Data Calibration

MWIR data were processed using ENVI 5.3 software (Harris Geospatial Solutions Inc., Broomfield,
CO, USA), assuming the model proposed by Griffin, et al. [11] for atmospheric compensation and
emissivity retrieval. The same methodology was applied in the processing of the LWIR data.

Firstly, atmospheric effects were removed from the images using an adaptation of the in-scene
atmospheric compensation (ISAC) algorithm [17,18]. The main advantage of this method relies on the
fact that the algorithm only needs the data from the imagery to perform the atmospheric compensation.
A uniform atmosphere and the presence of a surface similar to a black body in the scene (i.e., pixels with
surface emissivity values close to 1) are assumed in the correction. Transmissivity (τ(λ)) and upwelling
radiance (Lu(λ)), calculated with Equation (4) (Young, et al. [18] are used to define the atmospheric
compensation spectrum:

L(λ) ∼= B(λ, T)τ(λ) + Lu(λ) (4)

These values are calculated based on the brightness temperature of each pixel. After evaluating
each pixel in the scene, the algorithm selects the spectral channel (λ) with the highest number of
pixels with maximum values of brightness temperature (i.e., pixels with ε ∼= 1) as a reference channel.
A scatter plot of L(λ) and B(λ, T) is build for this channel and a linear fit is made through a regression
line adjusted to the upper top of the plot (i.e., values closer to ε ∼= 1). τ(λ) and Lu(λ) values are then
estimated from the slope and intercession point in L(λ), respectively, for each channel, and used to
estimate the surface radiance of each pixel, without the atmospheric interference.

Emissivity was estimated using the emissivity normalization algorithm [19–21]. The algorithm
estimates the temperature for each pixel using the radiance values calculated in the previous step and
assuming a fixed value of maximum emissivity for all pixels in every λ of the image. The maximum
temperature estimated for each pixel is then selected as the brightness temperature of the surface,
which is subsequently used to calculate the emissivity in the scene through Equation (5):

ελ,p =

 Lλ,p − R↑λ − τλR↓λ
τλ

(
Bλ

(
TM,p

)
− R↓λ

)
 (5)

where:

ελ,p = emissivity for pixel p
Lλ,p = radiance measured in λ for pixel p

R↑λ = upward radiance
τλ = atmospheric transmissivity for λ

R↓λ = downward radiance
Bλ = Blackbody radiance (Planck’s Function)
TM,p = highest temperature of the calculated temperatures for pixel p

3.3. Detection of Methane Plumes

The methodology applied for CH4 plume detection is presented in Figure 2. The images in
emissivity units were processed using a wavelet transform for simultaneous de-noising and spectral
enhancement. The matched filter (MF) algorithm [22] was used for the isolation of the plume in the
scene. A reference spectral signature of the CH4 acquired from National Institute of Standards and
Technology (NIST) [23] database, resampled for SEBASS spectral resolution and transformed with the
wavelet code, was used as an endmember for imaging classification with the MF. In addition, a median
filter (3 × 3) was applied to the resulting image. This methodology was applied in the processing of
MWIR and LWIR images. Each step is detailed in the next sections.
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Figure 2. Diagram of the methodology applied for the detection of CH4 plumes. * Adaptation of the
in-scene atmospheric compensation algorithm [18].

3.3.1. Wavelets

The wavelet transform comprises a processing tool that decomposes the original signal (i.e., image)
in time and frequency domains, thus representing the image in multi-scales [24–26]. Once the wavelet
components are computed, the noise is concentrated at the lowest scales while the continuum remains
at the highest scales. By eliminating the top and bottom components and summing the remaining
scales a high quality product is generated. This product is obtained by (i) filtering the noise in the
image; (ii) highlighting spectral features; (iii) decreasing the spectral continuum variability introduced
from variations in illumination and topography; and (iv) minimization of residuals from atmospheric
correction and temperature estimation [27,28]. Another advantage of the method comprises the
comparison between data acquired at different wavelengths. Since the spectra is normalized to zero
mean, the data acquired at different wavelengths will have the same weight and scale after the wavelet
transform, allowing both to be comparable. The wavelet function used to decomposed the image into
nine (9) components consists of the second derivative of a Gaussian function (e.g., DOG [29]). The final
image is the result of the sum of components 3, 4, 5, and 6. The remaining components are discarded.

3.3.2. Matched Filter

A matched filter (MF) is a classification algorithm used for the detection of known targets in
the scene through the estimate of the abundance of an endmember at the sub-pixel scale [30,31].
The suppression of the background components maximizes the signal of the endmembers,
enhancing the signature of the target. The final result consists of a grayscale image with minimum
variance, divided into MF scores varying between 0–1. MF scores represent the fraction of the pixels
that contains the endmember’s spectral signature. Values close to 0 are attributed to pixels from
the background, and values close to 1 to pixels from the target [32]. To isolate the target from the
background, a limit value “X” of the MF score is defined by the user. Adjusting the histogram at this
limit, only pixels with MF scores between “X − 1” are going to be highlighted in the scene. Here,
we defined a minimum MF score (X) of 0.7 for the detection of the plume.

The main advantage of the method relies on target detection based on a reference spectrum
(e.g., extracted from the image, acquired in the field or available on spectral libraries), eliminating the
need to acquire data from the remaining elements comprising the scene background. The drawback
of the MF is the possibility of false positives if other materials with C–H in the composition (e.g.,
HC based plastic, paint, alphalt) or rare materials not related to the target occur in the image [33].
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4. Results

Results obtained from processing SEBASS data show that the CH4 plume was identified distinctly
in the MWIR and LWIR ranges (Table 2). Figure 3 shows plots of gas rate versus the acquisition time
and weather condition (temperature, humidity, wind speed) data, acquired simultaneously to SEBASS
airborne survey for each gas station. The minimum and maximum flow rate detected in both ranges
were 18 m3/h and 40 m3/h, respectively. Pixels containing CH4 spectral features (i.e., centered at
3.3 µm and 7.9 µm) were mapped in both datasets, exhibiting simultaneity in plume position and
spatial distribution. The plumes were identified in all stations in the LWIR images [2]. However, in the
MWIR data, the gas was detected only at four out of the nine ground stations: 44-MX-10 (18 m3/h),
76-MX-3 (28 m3/h), 5 (29 m3/h), and 33-MX-10 (40 m3/h). Here, only the results with positive plume
detection in both intervals are presented (Figures 4–6).
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Figure 3. Metrics of ambient conditions—(A) temperature, (B) wind speed, (C) humidity,
(D) acquisition time—versus gas rate during the SEBASS airborne survey for each gas station (named
on the plots). Superscript letters after gas station names correspond to acquisition altitudes at
(a) = 457 m and (b) 762 m. Dashed lines limit the quadrants where temperature, wind speed, humidity,
and acquisition time favored the detection of CH4 plumes in the experiment.

Table 2. Detection of CH4 plumes in the MWIR and LWIR ranges. Superscript letters indicate the
image acquisition altitude at (a) 457 m and at (b) 762 m. 3= CH4 plume detected/x = CH4 plume
not detected.

Detection

Gas Station Gas Rate (m3/h/SCFH) WIND (Speed—Direction) MWIR LWIR

2Db 0.6/20 19 km/h—W x 3

2Ca 2.0/70 13 km/h—SSW x 3

2Cb 2.0/70 7 km/h—SSW x 3

1a 6.0/200 14 km/h—SSW x 3

1b 6.0/200 6 km/h—SSW x 3

27-AX-33a 6.0/200 8 km/h—SW x 3

4a 18.0/625 12 km/h—SSW x 3

4b 18.0/625 6 km/h—SSW x 3

44-MX-10a 18.0/625 10 km/h—SSW 3 3

44-MX-1 b 18.0/625 7 km/h—SSW 3 3
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Table 2. Cont.

Detection

Gas Station Gas Rate (m3/h/SCFH) WIND (Speed—Direction) MWIR LWIR

76-MX-3a 28.0/1000 9 km/h—SSW 3 3

5a 29.0/1025 11 km/h—SSW 3 3

33-MX-10a 40.0/1450 14 km/h—SSW x 3

33-MX-10b 40.0/1450 7 km/h—WNW 3 3

Spectra extracted from pixels of the gas plumes from stations with highest flow rates (i.e., 5 and
33-MX-10) are shown in Figure 7. In both sets of signatures, the CH4 features centered at 3.3 µm
(MWIR) and 7.7–7.8 µm (LWIR) stand out. In the spectral collection extracted from the LWIR images,
a decrease in the feature depth as the pixels move forward from the emission source is noted, as firstly
described by Scafutto, et al. [2]. However, in the images acquired in the MWIR range, this relation is
only observed in the spectral collection extracted from Station 5.

The wavelet transform reduced the noise (Figure 8), improving the quality of the image. With the
application of wavelet and MF, the CH4 plume was isolated from the background. The number
of pixels identified in each station retains proportionality with the flow rates of the experiment
(Table 2). Additionally, the plume direction agrees with the main wind direction (Table 2—data
collected concomitantly with the airborne surveys).
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Figure 4. Detection of CH4 plumes in the (A) MWIR and (B) LWIR ranges—SEBASS flight performed
on 20 August 2010 over station 5 (gas source: RMOTC—injection) at 11:20:26 (local time) with 0.50 m
spatial resolution and at 457 m AGL. The red square indicates the ground station location (i.e., source of
gas leak) and the respective plume. Pixels in blue (A) and red (B) indicate the occurrence of methane in
the scenes. The main direction of the wind is displayed in the diagram on the right side of the figure
(data collected between 11:00 p.m.–12:00 p.m.).
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Figure 5. Detection of CH4 plumes in the (A) MWIR and (B) LWIR ranges—SEBASS flight performed
on 20 August 2010 over station 76-MX-3 (gas source: RMOTC) at 11:39:17 (local time) with 0.50 m
spatial resolution and at 457 m above ground level (AGL). The red square indicates the ground station
location (i.e., source of gas leak) and the respective plume. Pixels in blue (A) and red (B) indicate the
occurrence of methane in the scenes. The main direction of the wind is displayed in the diagram on the
right side of the figure (data collected between 11:30 p.m.–12:30 p.m.).
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Figure 6. Detection of CH4 plumes in the (A) MWIR and (B) LWIR ranges—SEBASS flight performed
on 20 August 2010 over station 44-MX-10 (gas source: RMOTC—injection) at (1) 11:07:59 (local time)
with 0.50 m spatial resolution and at 457 m AGL and (2) 13:08:18 (local time) with 0.84 m spatial
resolution and at 762 m AGL. The red square indicates the ground station location (i.e., source of the
gas leak) and respective plume. Pixels in blue (A) and red (B) indicate the occurrence of methane in the
scene. The main direction of the wind is displayed in the diagram on the right side of the figure (data
collected between (1) 10:30 p.m.–11:30 p.m. and (2) 12:30 p.m.–13:30 p.m.).
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the CH4 features centered at 3.3 µm and 7.7 µm in the respective plots. Spectra were interrupted 
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Figure 7. SEBASS MWIR (A,C) and LWIR (B,D) spectral signatures in the wavelet domain extracted
from pixels near and far from emission sources. (A,B) Station 5 (subsurface leak of 29 m3/h;
data acquisition at 457 m). (C,D) Station 33-MX-10 (surface leak of 41.1 m3/h; data acquisition
at 762 m). Main absorption features are indicated in each plot.
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Figure 8. Comparison between spectral signatures extracted from the same pixels. (A,C): images in
emissivity units. (B,D): images transformed to the wavelet domain. The spectra were extracted from
the CH4 plume formed from Leak 5 from MWIR (A,B) and LWIR (C,D) images. Areas in grey outline
the CH4 features centered at 3.3 µm and 7.7 µm in the respective plots. Spectra were interrupted within
regions highly affected by atmospheric interference. The wavelet decreased the noise and increased the
contrast between the plume and the background (indicated by the black arrows in the plots). The same
improvements were noticed in the spectral collection extracted in other leakage stations.
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5. Discussion

Assuming the radiative transfer model proposed by Griffin, et al. [11], the images acquired at
MWIR and LWIR ranges with the SEBASS sensor over the field experiment of controlled CH4 release
were processed using the same methodology for atmospheric compensation, emissivity retrieval,
and plume mapping. The results obtained from the airborne data collected in this range proved
inferior when compared to those yielded in the LWIR window, since the radiation emitted by CH4 in
ambient conditions is very low in the MWIR range (see Figure S2 in Supplementary Materials).

The processing of MWIR data using methodologies usually applied to LWIR images led to the
detection of the CH4 plumes. However, due to the lower strength of the 3.3 µm feature under ambient
conditions and the greater amount of noise in the MWIR images, the use of more sophisticated
enhanced techniques is necessary to isolate the target from the background.

Considering the emissivity spectra extracted from the pixels from each plume (Figure 8), it is
noted that the values for the CH4 feature in the LWIR are close to 1 (~0.92). Nevertheless, the emissivity
retrieved for the same pixels are considerably smaller for the CH4 feature in the MWIR (~0.2).
The relation between emissivity (ελ) and reflectance (ρλ ) postulated by Kirchhoff’s Law [34] establishes
that the sum of the components must be equal to 1, which results in ρλ = 0.08 for the CH4 feature in
the LWIR and ρλ = 0.8 in the MWIR feature. Reflectance overcomes emissivity values in the MWIR
range. This corresponds to ten times the value of the reflectance in the LWIR. Therefore, the influence of
reflectance must be considered in the radiative transference model to achieve better results, as proposed
by Griffin, et al. [11] and Mushkin, et al. [12].

Apart from flow rate and background temperature, humidity, wind speed and time of data
acquisition also influence in the detection of CH4 plumes (Figure 3). Based on the conditions prevailing
during the experiment, results demonstrate that there is a threshold for proper plume sensing using
MWIR wavelengths. In the Casper experiment, best results were yielded from data collected after
11:00 a.m., at temperatures greater than 25 ◦C, at humidity levels lower than 25% and at wind speeds
inferior to 10 km/h. The hour of the day is related to the solar incidence angle. Between 11:00 a.m. and
13:00 p.m. the Sun is at its maximum, and so is the incidence angle, diminishing the scattering of solar
radiation. The increase of the atmospheric temperature will also warm up the plume, enhancing the
contrast against the background. The lower the humidity, the lower the interference of atmospheric
components (especially H2O), favoring plume detection.

The only exception occurs with the ground station 4b (Figure 3). Despite the fact that the image
over this station was acquired under favorable parameters for CH4 detection, it seems that the low
wind speed (i.e., 6 km/h) was insufficient to disperse the plume at the time of the survey. Therefore,
the pixels of the plume were concentrated in a few pixels in the image, preventing the detection of an
actual plume.

Along-wind (AW) and cross-wind (CW) profiles extracted from LWIR and MWIR images are
illustrated in Figure 9. They show that the values of emissivity for background pixels are more
homogeneous in the LWIR. The difference between the maximum and minimum values of emissivity
for background pixels are 0.02 CW and 0.03 AW in the LWIR plots. This difference is larger for the
MWIR images, i.e., 0.4 CW and 0.5 AW. The higher variability of emissivity values of the pixels around
the average background hampers the isolation of the plume in the MWIR.

The application of the wavelet transform was essential to overcome these problems. The use of
this technique enhanced the signal of the gas, since the background values of the pixels in the wavelet
image are less variable in comparison to emissivity images. Furthermore, as shown in the spectral
signatures in Figure 8, it is noticed that once the wavelet normalizes the spectrum, the background is
concentrated around zero, enhancing the CH4 feature in both wavelengths. However, in the MWIR
range, the width of the spectral feature of the plume is enlarged. This is due to the fact that the lower
wavelet scales were discarded in the overall feature enhancing process, and so the feature originally
located between 3.1 and 3.5 µm incorporated part of the wavelengths corresponding to background
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pixels (feature spanning between 3.0 and 4 µm in the wavelet domain), which may lead to the detection
of false positives.

Another advantage of the wavelets comprises the significant decrease of the noise in the image [35],
which also has positive consequences on the CH4 spectral signatures (Figure 8). Compared to the
signatures presented by Scafutto, et al. [2] in their previous work with raw LWIR emissivity data,
here the wavelet version of the CH4 feature at 7.7 µm, as well as its variation due to the distance from
the emission source, are much better defined (Figure 8). The same is observed in the MWIR spectra.
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Figure 9. Along-wind (AWP) and cross-wind (CW) profiles of MWIR (A) and LWIR (B) images acquired
over Station 5. Areas in grey outline the CH4 features centered at 3.3 µm and 7.7 µm in the respective
plots. The difference between emissivity values of the pixels of the plume (P) and background (B) is
expressive in the LWIR images whereas, for the MWIR, this difference is impaired due to the proximity
of the average values between the plume and background.

6. Conclusions

Considering a controlled field experiment, here we show, for the first time, the detection of CH4

plumes using airborne MWIR hyperspectral data. The high resolution and low signal to noise ratio
of the SEBASS sensor enabled the detection of the plumes using methods usually applied to LWIR
images, when combined with wavelet transform. It was demonstrated that, despite the interference
of the reflectance in this range, it was possible to detect the CH4 plume in the atmospheric window
between 3–4 µm. Flow rates equal or higher than 18 m3/h (four out of nine gas stations) were detected
in images acquired at 457 m and 762 m altitude. The analysis of the spectral signature extracted from
the plumes evidenced that the application of the wavelet transform was essential for the detection of
the gas; reducing the noise in the image and enlarging the contrast between plume and background
pixels and, thus, highlighting the CH4 feature. Additionally, we demonstrated that the acquisition time
and weather conditions, such as temperature, humidity, and wind speed, hamper detection, and so
limits of each of these variables must be considered for successful approaches on CH4 plume detection
using daytime MWIR data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/8/1237/
s1, Figure S1: HITRAN spectral lines of methane (CH4) at the temperature of 296 K [18]. Location of fundamental
vibrations is indicated in the plot as v1, v2, v3, v4; Figure S2: Methane self-emission spectrum acquired under
ambient conditions (298 K/25 ◦C) with the HYPER-CAM MWE (1.5–5 µm) and the HYPER-CAM METHANE

http://www.mdpi.com/2072-4292/10/8/1237/s1
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(7.4–8.3 µm) hyperspectral cameras operated by TELOPS INC. (Quebec City, QC, Canada—http://telops.com/
products/hyperspectral-cameras). Both cameras have user-selectable spectral resolution up to 0.25 cm−1 and a
NESR* (nw/cm2 s cm−1) of 7 and 6 for MWIR and LWIR respectively (* noise equivalent spectral radiance).
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