Cross-Scale Correlation between In Situ Measurements of Canopy Gap Fraction and Landsat-Derived Vegetation Indices with Implications for Monitoring the Seasonal Phenology in Tropical Forests Using MODIS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection
2.2.1. Field Data Collection
2.2.2. Satellite Data Collection
2.3. Data Processing
2.4. Assessing the Similarity of Ground and Landsat Measurements of Canopy Condition
2.5. Examination of Rainfall as a Driver of Deciduousness in the Southern Yucatán
3. Results
3.1. Assessing the Validity of Using Late-Dry Season Observations of Canopy as Indicators of Deciduousness
3.2. Comparison of In Situ Gap Fraction and Normalized Seasonal Change of Landsat NDVI
3.3. Comparison of In Situ Gap Fraction and Normalized Seasonal Change of Landsat EVI2
3.4. Comparison of In Situ Gap Fraction and Normalized Seasonal Change of Landsat NDWI
3.5. Modeling MODIS NDWI with TRMM Rainfall
3.5.1. Regressions of Monthly Time Series
3.5.2. Regressions of Annual Time Series
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baldocchi, D.D.; Wilson, K.B.; Gu, L. How the environment, canopy structure, and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broadleaf deciduous forest—An assessment with the biophysical model CANOAK. Tree Physiol. 2002, 22, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef]
- Franklin, J.; Rogan, J.; Phinn, S.R.; Woodcock, C.E. Rationale and Conceptual Framework for Classification Approaches to Assess Forest Resources and Properties. In Remote Sensing of Forest Environments; Wulder, M., Franklin, S., Eds.; Springer: Boston, MA, USA, 2003; pp. 279–300. ISBN 978-1-4613-5014-9. [Google Scholar]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Asner, G.P. Painting the world REDD: Addressing scientific barriers to monitoring emissions from tropical forests. Environ. Res. Lett. 2011, 6, 024005. [Google Scholar] [CrossRef]
- Berenguer, E.; Ferreira, J.; Gardner, T.A.; Cruz Aragao, J.E.O.; De Camargo, P.B.; Cerri, C.E.; Durigan, M.; De Oliveria, R.C., Jr.; Guimaraes Vieira, I.C.; Barlow, J. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 2014, 20, 3713–3726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvin, D.C.; Asner, G.P.; Knapp, D.E.; Anderson, C.B.; Martin, R.E.; Sinca, F.; Tupayachi, R. Amazonian landscapes and the bias in field studies of forest structure and biomass. Proc. Natl. Acad. Sci. USA 2014, 111, E5224–E5232. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.Q.; Asner, G.P.; Morton, D.C.; Andersonm, L.O.; Saatchi, S.S.; Espirito-Santo, F.D.B.; Palace, M.; Souz, C., Jr. Regional ecosystem structure and function: Ecological insights from remote sensing of tropical forests. Trends Ecol. Evol. 2007, 22, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from field to the satellite. Remote Sens. Environ. 2006, 100, 265–279. [Google Scholar] [CrossRef]
- Rogan, J.; Mietkiewicz, N. Land cover change detection. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 579–603. ISBN 9781482217957. [Google Scholar]
- Browning, D.M.; Karl, J.W.; Morin, D.; Richardson, A.D.; Tweedie, C.E. Phenocams Bridge the Gap between Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sens. 2017, 9, 1071. [Google Scholar] [CrossRef]
- Cuba, N.; Rogan, J.; Christman, Z.; Williams, C.A.; Schneider, L.C.; Lawrence, D.; Millones, M. Modeling dry season deciduousness in Mexican Yucatán forest using MODIS EVI data (2000–2011). GISci. Remote Sens. 2013, 50, 26–49. [Google Scholar] [CrossRef]
- Hesketh, M.; Sánchez-Azofeifa, A. Azofeifa, A. A Review of Remote Sensing of Tropical Dry Forests. In Tropical Dry Forests in the Americas: Ecology, Conservation, and Management; Sánchez-Azofeifa, A., Powers, J.S., Fernandes, G.W., Quesada, M., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 80–98. ISBN 9781466512009. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report; NASA: Greenbelt, MD, USA, 1974; p. 371.
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely-sensed Vegetation Indices, canopy attributes and plant physiological processes: What Vegetation Indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed]
- Hardisky, M.; Klemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive—How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Turner, B.L., II; Villar, S.C.; Foster, D.; Geoghegan, J.; Keys, E.; Klepeis, P.; Lawrence, D.; Mendoza, P.M.; Manson, S.; Ogneva-Himmelberger, Y.; et al. Deforestation in the southern Yucatán peninsular region: An integrative approach. For. Ecol. Manag. 2001, 154, 353–370. [Google Scholar] [CrossRef]
- Véga, C.; Renaud, J.-P.; Durrieu, S.; Bouvier, M. On the interest of penetration depth, canopy area, and volume metrics to improve Lidar-based models of forest parameters. Remote Sens. Environ. 2016, 175, 32–42. [Google Scholar] [CrossRef]
- Eriksson, H.M.; Eklundh, L.; Kuusk, A.; Nilson, T. Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sens. Environ. 2006, 103, 408–418. [Google Scholar] [CrossRef]
- Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; Weishampel, J.F.; Prince, S. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens. Environ. 2002, 79, 305–319. [Google Scholar] [CrossRef]
- Bullock, S.H.; Solis-Magallanes, J.A. Phenology of Canopy Trees of a Tropical Deciduous Forest in Mexico. Biotropica 1990, 22, 22–35. [Google Scholar] [CrossRef]
- Nijland, W.; Bolton, D.K.; Coops, N.C.; Stenhouse, G. Imaging phenology; scaling from camera plots to landscapes. Remote Sens. Environ. 2016, 177, 13–20. [Google Scholar] [CrossRef]
- Schmook, B.; van Vliet, N.; Radel, C.; de Jesús Manzón-Che, M.; McCandless, S. Persistence of Swidden Cultivation in the Face of Globalization: A Case Study from Communities in Calakmul, Mexico. Hum. Ecol. 2013, 41, 93–107. [Google Scholar] [CrossRef]
- Perez-Salicrup, D. Forest Types and Their Implications. In Integrate Land-Change Science and Tropical Deforestation in the Southern Yucatan: Final Frontiers; Turner, B.L., II, Geoghegan, J., Foster, D., Eds.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Schmook, B.; Dickson, R.P.; Sangermano, F.; Vadjunec, J.M.; Eastman, J.R.; Rogan, J. A step-wise land-cover classification of the tropical forests of the Southern Yucatan, Mexico. Int. J. Remote Sens. 2011, 32, 1139–1164. [Google Scholar] [CrossRef]
- Cuba, N.; Lawrence, D.; Rogan, J.; Williams, C.A. Local variability in the timing and intensity of tropical dry forest deciduousness is explained by differences in forest stand age. GISci. Remote Sens. 2018, 3, 437–456. [Google Scholar] [CrossRef]
- Vester, H.F.M.; Lawrence, D.; Eastman, J.R.; Turner, B.L., II; Calme, S.; Dickson, R.; Pozo, C.; Sangermano, F. Land change in the southern Yucatán and Calakmul Biosphere Reserve: Effects on habitat and biodiversity. Ecol. Appl. 2007, 17, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Magana, V.; Amador, J.A.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Lawrence, D. Regional-Scale Variation in Litter Production and Seasonality in Tropical Dry Forests of Southern Mexico. Biotropica 2005, 37, 561–570. [Google Scholar] [CrossRef]
- Márdero, S.; Nickl, E.; Schmook, B.; Schneider, L.; Rogan, J.; Christman, Z.; Lawrence, D. Sequías en el Sur de la Península de Yucatán: Análisis de la variabilidad anual y estacional de la precipitación. Investig. Geogr. 2012, 78, 19–33. [Google Scholar] [CrossRef]
- Márdero, S.; Schmook, B.; Christman, Z.; Nickl, E.; Schneider, L.; Rogan, J.; Lawrence, D. Precipitation Variability and Adaptation Strategies in the Southern Yucatán Peninsula, Mexico: Integrating Local Knowledge with Quantitative Analysis. In International Perspectives on Climate Change; Leal, W., Alves, F., Caeiro, S., Azeiteiro, U.M., Eds.; Springer International Publising: Basel, Switzerland, 2014; pp. 189–201. ISBN 978-3-319-04489-7. [Google Scholar]
- Turner, B.L., II; Geoghegan, J.; Lawrence, D.; Radel, C.; Schmook, B.; Vance, C.; Manson, S.; Keys, E.; Foster, D.; Klepeis, P.; et al. Land system science and the social-environmental system: The case of Southern Yucatan Peninsular Region (SPYR) project. Curr. Opin. Environ. Sustain. 2016, 19, 18–29. [Google Scholar] [CrossRef]
- Van Hoek, M.; Jia, L.; Zhou, J.; Zheng, C.; Menenti, M. Early Drought Detection by Spectral Analysis of Satellite Time Series of Precipitation and Normalized Difference Vegetation Index. Remote Sens. 2016, 8, 422. [Google Scholar] [CrossRef]
- Boer, M.M.; Macfarlane, C.; Norris, J.; Sadler, R.J.; Wallace, J.; Grierson, P.F. Mapping burned areas and burn severity patterns in SW Australian eucalypt forest using remotely-sensed changes in leaf area index. Remote Sens. Environ. 2008, 112, 4358–4369. [Google Scholar] [CrossRef]
- Pekin, B.; Macfarlane, C. Measurement of Crown Cover and Leaf Area Index Using Digital Cover Photography and Its Application to Remote Sensing. Remote Sens. 2009, 1, 1298–1320. [Google Scholar] [CrossRef] [Green Version]
- Chianucci, F.; Cutini, A. Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agric. For. Meteorol. 2013, 168, 130–139. [Google Scholar] [CrossRef]
- Hwang, Y.; Ryu, Y.; Kimm, H.; Jiang, C.; Lang, M.; Macfarlane, C.; Sonnentag, O. Correction for light scattering combined with sub-pixel classification improves estimation of gap fraction from digital cover photography. Agric. For. Meteorol. 2016, 222, 32–44. [Google Scholar] [CrossRef] [Green Version]
- United States Geological Survey. Product Guide: Landsat 4–7 Climate Data Record (CDR) Surface Reflectance. Version 5.8. June 2015. Available online: http://landsat.usgs.gov/CDR_LSR.php (accessed on 15 March 2016).
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- United States Geological Survey. Product Guide: Provisional Landsat 8 Surface Reflectance Code (LaSRC) Product, Version 1.4. 2015. Available online: http://landsat.usgs.gov/CDR_LSR.php (accessed on 15 March 2016).
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Env. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Didan, K. MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1 km SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Huffman, G.; Adler, R.; Yang, H.D.; Guojun, G.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Rogan, J.; Schneider, L.; Christman, Z.; Millones, M.; Lawrence, D.; Schmook, B. Hurricane disturbance mapping using MODIS EVI data in the southeastern Yucatan, Mexico. Remote Sens. Lett. 2011, 2, 259–267. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Estrada-Medina, H.; Allen, M.F.; Jiménez-Osornio, J.J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 2007, 152, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, J.P.; Holbrook, N.M. Physiological Mechanisms Underlying the Seasonality of Leaf Senescence and Renewal in Seasonally Dry Tropical Forest Trees. In Seasonally Dry Tropical Forests: Ecology and Conservation; Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G., Eds.; Island Press: Washington, DC, USA, 2011; pp. 129–140. ISBN 978-1-61091-021-7. [Google Scholar]
- Levin, S.A. The Problem of Pattern and Scale in Ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Cheng, D.; Rogan, J.; Schneider, L.; Cochrane, M. Evaluating MODIS active fire products in subtropical Yucatán forest. Remote Sens. Lett. 2013, 4, 455–464. [Google Scholar] [CrossRef]
- Allen, K.; Dupuy, J.M.; Gei, M.G.; Hulshof, C.; Medvigy, D.; Pizano, C.; Salgado-Negret, B.; Smith, C.M.; Trierweiler, A.; Van Bloem, S.J.; et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 2017, 12, 2. [Google Scholar] [CrossRef]
- Balzarolo, M.; Vicca, S.; Nguy-Robertson, A.L.; Bonal, D.; Elbers, J.A.; Fu, Y.H.; Grünwald, T.; Horemans, J.A.; Papale, D.; Peñuelas, J.; et al. Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in-situ obervations. Remote Sens. Environ. 2016, 174, 290–300. [Google Scholar] [CrossRef]
- Helman, D.; Lensky, I.M.; Tessler, N.; Osem, Y. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series. Remote Sens. 2015, 7, 12314–12335. [Google Scholar] [CrossRef] [Green Version]
Sensor | Path/Row | Year | Day of Year | Sun Elevation (°) | Sun Azimuth (°) | Cloud Cover (%) |
---|---|---|---|---|---|---|
ETM+ | 20/47 | 2014 | 333 | 44.47 | 151.32 | 2 |
OLI | 19/47 | 2014 | 334 | 44.49 | 151.84 | 25 |
ETM+ | 20/47 | 2014 | 349 | 42.18 | 150.65 | 2 |
OLI | 19/47 | 2014 | 350 | 42.28 | 151.00 | 27 |
ETM+ | 19/47 | 2014 | 358 | 41.56 | 149.57 | 24 |
OLI | 19/47 | 2015 | 1 | 41.63 | 148.68 | 70 |
OLI | 19/47 | 2015 | 17 | 42.67 | 145.25 | 74 |
ETM+ | 19/47 | 2015 | 128 | 67.71 | 90.55 | 37 |
OLI | 19/47 | 2015 | 129 | 67.66 | 89.84 | 44 |
OLI | 20/47 | 2015 | 136 | 67.84 | 85.27 | 14 |
ETM+ | 19/47 | 2015 | 137 | 67.94 | 84.66 | 30 |
ETM+ | 19/47 | 2015 | 144 | 67.87 | 80.85 | 60 |
OLI | 19/47 | 2015 | 145 | 67.75 | 80.39 | 30 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuba, N.; Rogan, J.; Lawrence, D.; Williams, C. Cross-Scale Correlation between In Situ Measurements of Canopy Gap Fraction and Landsat-Derived Vegetation Indices with Implications for Monitoring the Seasonal Phenology in Tropical Forests Using MODIS Data. Remote Sens. 2018, 10, 979. https://doi.org/10.3390/rs10070979
Cuba N, Rogan J, Lawrence D, Williams C. Cross-Scale Correlation between In Situ Measurements of Canopy Gap Fraction and Landsat-Derived Vegetation Indices with Implications for Monitoring the Seasonal Phenology in Tropical Forests Using MODIS Data. Remote Sensing. 2018; 10(7):979. https://doi.org/10.3390/rs10070979
Chicago/Turabian StyleCuba, Nicholas, John Rogan, Deborah Lawrence, and Christopher Williams. 2018. "Cross-Scale Correlation between In Situ Measurements of Canopy Gap Fraction and Landsat-Derived Vegetation Indices with Implications for Monitoring the Seasonal Phenology in Tropical Forests Using MODIS Data" Remote Sensing 10, no. 7: 979. https://doi.org/10.3390/rs10070979
APA StyleCuba, N., Rogan, J., Lawrence, D., & Williams, C. (2018). Cross-Scale Correlation between In Situ Measurements of Canopy Gap Fraction and Landsat-Derived Vegetation Indices with Implications for Monitoring the Seasonal Phenology in Tropical Forests Using MODIS Data. Remote Sensing, 10(7), 979. https://doi.org/10.3390/rs10070979