Next Article in Journal
Perspective of a Ku-Ka Dual-Frequency Scatterometer for Simultaneous Wide-Swath Ocean Surface Wind and Current Measurement
Previous Article in Journal
Application of UAV Remote Sensing for a Population Census of Large Wild Herbivores—Taking the Headwater Region of the Yellow River as an Example
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle

A Novel Cloud Removal Method Based on IHOT and the Cloud Trajectories for Landsat Imagery

1
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
2
Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
3
Department of Emergency Management, Arkansas Tech University, Russellville, AR 72801, USA
4
Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
5
Center for Environmental Remote Sensing, Chiba University, Chiba 263-8522, Japan
*
Author to whom correspondence should be addressed.
Remote Sens. 2018, 10(7), 1040; https://doi.org/10.3390/rs10071040
Received: 21 May 2018 / Revised: 25 June 2018 / Accepted: 30 June 2018 / Published: 2 July 2018
(This article belongs to the Section Remote Sensing Image Processing)
  |  
PDF [5527 KB, uploaded 2 July 2018]
  |  

Abstract

Cloud removal is a prerequisite for the application of Landsat datasets, as such satellite images are invariably contaminated by clouds. Clouds affect the transmission of radiation signal to different degrees because of their different thicknesses, shapes, heights and distributions. Existing methods utilize pixel replacement to remove thick clouds and pixel correction techniques to rectify thin clouds in order to retain the land surface information in contaminated pixels. However, a major limitation of these methods refers to their deficiency in retrieving land surface reflectance when both thick clouds and thin clouds exist in the images, as the two types of clouds differ in the transmission of radiation signal. As most remotely sensed images show rather complex cloud contamination patterns, an efficient method to alleviate both thin and thick cloud effects is in need of development. To this end, the paper proposes a new method to rectify cloud contamination based on the cloud detection of iterative haze-optimized transformation (IHOT) and the cloud removal of cloud trajectory (IHOT-Trajectory). The cloud trajectory is able to take consideration of signal transmission for different levels of cloud contamination, which characterizes the spectral response of a certain type of land cover under increasing cloud thickness. Specifically, this method consists in four steps. First, the cloud thicknesses of contaminated pixels are estimated by the IHOT. Second, areas affected by cloud shadows are marked. Third, cloud trajectories are fitted with the aid of neighboring similar pixels under different cloud thickness. Last, contaminated areas are rectified according to the relationship between the land surface reflectance and the IHOT. The experimental results indicate that the proposed approach is able to effectively remove both the thin and thick clouds and erase the cloud shadows of Landsat images under different scenarios. In addition, the proposed method was compared with the dark object subtraction (DOS), the modified neighborhood similar pixel interpolator (MNSPI) and the multitemporal dictionary learning (MDL) methods. Quantitative assessments show that the IHOT-Trajectory method is superior to the other cloud removal methods overall. For specific spectral bands, the proposed method performs better than other methods in visible bands, whereas it does not necessarily perform better in infrared bands. View Full-Text
Keywords: iterative haze optimized transformation (IHOT); cloud-thickness; trajectory; cloud removal; Landsat imagery iterative haze optimized transformation (IHOT); cloud-thickness; trajectory; cloud removal; Landsat imagery
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chen, S.; Chen, X.; Chen, X.; Chen, J.; Cao, X.; Shen, M.; Yang, W.; Cui, X. A Novel Cloud Removal Method Based on IHOT and the Cloud Trajectories for Landsat Imagery. Remote Sens. 2018, 10, 1040.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top