Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling
Abstract
1. Introduction
2. Observation and Method
2.1. Lidar Measurement
2.2. Aerosol Component Retrieval from Lidar Measurements
2.3. Mass Concentration Retrieval from Lidar Measurements
2.4. In-Situ Sampling Measurement (ACSA-12, MAAP, and Denuder-Filter Pack Method)
3. Results
3.1. Seasonal Variation of Optical Properties and In-Situ Aerosol Measurements
3.2. Vertical Distribution of Four Aerosol Components
3.3. Comparison of Aerosol Mass Concentration
3.3.1. Black Carbon
3.3.2. Sea Salt
3.3.3. PM2.5 and PM10
4. Conclusions
- (1)
- We summarized seasonal means of aerosol optical properties, in-situ aerosol mass concentrations, and meteorological parameters. The seasonal variation suggests that mixing of anthropogenic and natural aerosols (SS and DS), as well as hygroscopic growth of water-soluble aerosols may be key processes to produce aerosol seasonal variation in Fukuoka, in the downwind region of Japan.
- (2)
- We found overestimation of lidar-derived BC mass concentration using the pure BC model; however, the use of the internal mixture model of BC with water-soluble substances (Core-Gray-Shell (CGS) model) drastically reduced BC overestimation. This suggests that using the CGS model is essential in estimating BC mass concentration from lidar measurements, at least in this Asian region.
- (3)
- Systematic overestimation of BC mass concentration was found during summer, even though the CGS model was applied. The observations from in-situ and MMRL measurements implied misclassification of AP particles as CGS particles in the lidar retrieval. We found that this misclassification was at least partially caused by underestimation of model-reanalysis RH data used in the retrieval. Thus, use of more reliable vertical data of RH (e.g., sonde-derived or lidar-derived RH data) will lead to better estimation of BC (and AP).
- (4)
- The time variation of lidar-derived mass concentration of SS was generally consistent with in-situ aerosol measurements. However, we found some overestimation of SS mass concentration. In-situ and MMRL measurements suggested internal mixing between DS and nitrate during all dust events in 2015; this internal mixing may cause misclassification of DS as SS, and thus lead to overestimation of SS. The internal mixture of DS and water-soluble substances (e.g., nitrate and sulfate), as well as the mixture of BC and water-soluble substances will lead to better estimation of aerosol components.
- (5)
- Time variations for lidar-derived PM2.5, PM10, and PMc were in good agreement with in-situ measurement. On the other hand, lidar sometimes overestimated PM2.5 and PM10 during a dust event, although the lidar-derived PMc agree well with in-situ measured PMc. This implies that the overestimation of PM10 is caused by the overestimation of PM2.5, which is mainly affected by overestimation of fine-mode DS.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Zhang, X.C.; Gong, S.L.; Zhang, Y.M.; Sun, J.Y. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Liu, J.; Hu, B.; Wen, T.; Tang, G.; Zhang, J.; Wu, F.; Ji, D.; Wang, L.; et al. Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing-Tianjin-Hebei region, China. Atmos. Chem. Phys. 2017, 17, 12941–12962. [Google Scholar] [CrossRef]
- Zhao, B.; Liou, K.N.; Gu, Y.; Li, Q.; Jiang, J.H.; Su, H.; He, C.; Tseng, H.L.R.; Wang, S.; Liu, R.; et al. Enhanced PM2.5 Pollution in China due to aerosol-cloud interactions. Sci. Rep. 2017, 7, 4453. [Google Scholar] [CrossRef] [PubMed]
- IPCC. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaugham, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Vaugham, M.A.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol classification from airbore HSRL and comparisons with the CALIPSO vertical feature mask. J. Atmos. Meas. Technol. 2013, 6, 1397–1412. [Google Scholar] [CrossRef]
- Ansmann, A.; Riebesell, M.; Wandinger, U.; Weitkamp, C.; Michaelis, W. Combined Raman elastic-backscatter LIDAR for vertical profiles of moisture, particle extinction, backscatter and LIDAR ratio. Appl. Phys. 1992, 55, 18–28. [Google Scholar] [CrossRef]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. 2007, 112, D16202. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements–methodology and examples. Atmos. Meas. Technol. 2012, 5, 73–98. [Google Scholar] [CrossRef]
- Sugimoto, N.; Uno, I.; Nishikawa, M.; Shimizu, A.; Matsui, I.; Dong, X.; Chen, Y.; Quan, H. Record heavy Asian dust in Beijing in 2002: Observations and model analysis of recent events. Geophys. Res. Lett. 2003, 30, 1640. [Google Scholar] [CrossRef]
- Kanatani, K.T.; Ito, I.; Al-Delaimy, W.K.; Adachi, Y.; Mathews, W.C.; Ramsdell, J.W. Desert dust exposure is associated with increased risk of asthma hospi-talization in children. Am. J. Respir. Crit. Care Med. 2010, 182, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Onishi, K.; Kurosaki, Y.; Otani, S.; Yoshida, A.; Sugimoto, N. Atmospheric transport route determines components of Asian dust and health effect in Japan. Atmos. Environ. 2012, 49, 94–102. [Google Scholar] [CrossRef]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Mori, I.; Nishikawa, M.; Kido, M. Relationship between Lidar-derived Dust Extinction Coeffcients and Mass Concentrations in Japan. Sola 2011, 7A, 1–4. [Google Scholar] [CrossRef]
- Kaneyasu, N.; Sugimoto, N.; Shimizu, A.; Yamamoto, S.; Kawamoto, K. Comparison of Lidar-derived dust extinction coefficients and the mass concentrations of surface aerosol. J. Jpn. Soc. Atmos. Environ. 2012, 47, 285–291. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groβ, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Tesche, M.; Müller, D.; Gross, S.; Ansmann, A.; Althausen, D.; Freudenthaler, V.; Weinzierl, B.; Veira, A.; Petzold, A. Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus B 2011, 63, 677–694. [Google Scholar] [CrossRef]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Tatarov, B.; Okamoto, H. Algorithm to retrieve aerosol optical properties from high-spectral-resolution lidar and polarization Mie-scattering lidar measurements. IEEEE Trans. Geosci. Remote Sens. 2008, 46, 4094–4103. [Google Scholar] [CrossRef]
- Nishizawa, T.; Sugimoto, N.; Matsui, I.; Shimizu, A.; Hara, Y.; Uno, I.; Yasunaga, K.; Kudo, R.; Kim, S.W. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distribution of aerosol components. J. Quant. Spectr. Radiat. Transf. 2017, 188, 79–93. [Google Scholar] [CrossRef]
- Hara, Y.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Pan, X.; Kobayashi, H.; Osada, K.; Uno, I. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system. J. Quant. Spectr. Radiat. Transf. 2017, 188, 20–27. [Google Scholar] [CrossRef]
- Pan, X.L.; Uno, I.; Hara, Y.; Kuribayashi, M.; Kobayashi, H.; Sugimoto, N.; Yamamoto, S.; Shimohara, T.; Wang, Z. Observation of the simultaneous transport of Asian mineral dust aerosols with anthropogenic pollutants using a POPC during a long-lasting dust event in late spring 2014. Geophys. Res. Lett. 2015, 42, 1593–1598. [Google Scholar] [CrossRef]
- Pan, X.L.; Uno, I.; Hara, Y.; Osada, K.; Yamamoto, S.; Wang, Z.; Sugimoto, N.; Kobayashi, H.; Wang, Z.F. Polarization properties of aerosol particles over western Japan: Classification, seasonal variation, and implications for air quality. Atmos. Chem. Phys. 2016, 16, 9863–9873. [Google Scholar] [CrossRef]
- Itahashi, S.; Hayami, H.; Uno, I.; Pan, X.L.; Uematsu, M. Importance of coarse-mode nitrate produced via sea salt as atmospheric input to east Asian oceans. Geophys. Res. Lett. 2016, 43, 5483–5491. [Google Scholar] [CrossRef]
- Itahashi, S.; Hayami, H.; Yumimoto, K.; Uno, I. Chinese province-scale source apportionments for sulfate aerosol in 2005 evaluated by the tagged tracer method. Environ. Pollut. 2017, 220, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Osada, K.; Kamikuchi, T.; Yamamoto, S.; Kuwahara, S.; Pan, X.; Hara, Y.; Uno, I. Comparison of ionic concentrations on size-segregated atmospheric aerosol particl based on a denuer-filter method and a Continuous Dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12). Earozoru Kenkyu 2016, 31, 203–209. [Google Scholar] [CrossRef]
- Uno, I.; Osada, K.; Yumimoto, K.; Wang, Z.; Itahashi, S.; Pan, X.; Hara, Y.; Kanaya, Y.; Yamamoto, S.; Fairlie, T.D. Seasonal variation of fine- and coarse-mode nitrates and related aerosols over East Asia: Synergetic observations and chemical transport model analysis. Atmos. Chem. Phys. 2017, 17, 14181–14197. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111, D11208. [Google Scholar] [CrossRef]
- D’Almeida, G.; Koepke, P.; Shettle, E.P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics; A Deepak Pub.: Hampton, VA, USA, 1991; p. 561, ISBN-13 978-0937-194225. [Google Scholar]
- Kahnert, M.; Nousiainen, T.; Lindqvist, H. Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates. Opt. Express 2013, 21, 7974–7993. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.A.; Malm, W.C.; Kreidenweis, S.M. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 1999, 104, 15941–15954. [Google Scholar] [CrossRef]
- Garnett, J.C.M. Colours in meatal glasses and in metallic films. Philos. Trans. Soc. 1904, 203, 385–420. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Kondo, Y.; Moteki, N.; Fast, J.D.; Zaveri, R.A. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impac. J. Geophys. Res. 2013, 118, 2304–2326. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Kimoto, H.; Ueda, A.; Tsujimoto, K.; Mitani, Y.; Toyasaki, Y.; Kimoto, T. Development of continuous dichotomous aerosol chemical speciation analyzer. Clean Technol. 2013, 23, 49–52. (In Japanese) [Google Scholar]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E.T. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 1986, 91, 6646–6658. [Google Scholar] [CrossRef]
- Kanaya, Y.; Taketani, F.; Komazaki, Y.; Liu, X.; Kondo, Y.; Sahu, L.K.; Irie, H.; Takashima, H. Comparison of Black carbon mass concentrations observed by Multi-Angle Absorption Photometer (MAAP) and Continuous Soot0Monitoring System (COSMOS) on Fukue Island and in Tokyo, Japan. Atmos. Meas. Technol. 2012, 47, 1–10. [Google Scholar] [CrossRef]
- Oshima, N.; Koike, M.; Zhang, Y.; Kondo, Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. J. Geophys. Res. 2009, 114, D18202. [Google Scholar] [CrossRef]
- Ackermann, J. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Ocean. Technol. 1998, 15, 1043–1050. [Google Scholar] [CrossRef]
- Bellenger, H.; Yoneyama, K.; Katsumata, K.; Nishizawa, T.; Yasunaga, K.; Shirooka, R. Observation of moisture tendencies related to shallow convection. J. Atmos. Sci. 2015, 72, 641–659. [Google Scholar] [CrossRef]
- Sugimoto, N.; Nishizawa, T.; Shimizu, A.; Matsui, I.; Kobayashi, H. Detection of internally mixed Asian dust wit air pollution aerosols using a polarization optical particle counter and a polarization-sensitive two-wavelength lidar. J. Quant. Spectr. Radiat. Transf. 2014, 150, 107–113. [Google Scholar] [CrossRef]
- Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; et al. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution. Sci. Rep. 2016, 7, 335. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, A.J.; Berker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef]
- Hayasaka, T.; Satake, S.; Shimizu, A.; Sugimoto, N.; Matsui, I.; Aoki, K.; Muraji, Y. Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds-East Asia Regional Experiment 2005. J. Geophys. Res. 2007, 112, D22S35. [Google Scholar] [CrossRef]
AP | SS | DS | Pure BC | CGS | |
---|---|---|---|---|---|
Mode radius [μm] | 0.10 | 1.67 | 2.00 | 0.05 | 0.11 |
Standard deviation | 1.6 | 2.2 | 2.0 | 2.1 | 1.6 |
S532 [sr] | 53 | 19 | 47 | 98 | 101 |
CR532/1064 | 2.9 | 1.5 | 1.0 | 4.2 | 1.8 |
δ532 [%] | 2 | 2 | 30 | 2 | 2 |
α532/PM2.5 [m2/g] | 4.3 | 0.6 | 0.2 | 9.8 | 2.7 |
α532/PM10 [m2/g] | 0 | 1.7 | 0.5 | 0 | 0 |
Winter (DJF) | Spring (MAM) | Summer (JJA) | Autumn (SON) | |
---|---|---|---|---|
α355 [/km] | 0.27 ± 0.17 2 | 0.26 ± 0.14 | 0.31 ± 0.20 | 0.22 ± 0.12 |
α532 [/km] | 0.17 ± 0.12 | 0.16 ± 0.10 | 0.22 ± 0.20 | 0.14 ± 0.12 |
S355 [sr] | 53 ± 20 | 56 ± 21 | 56 ± 18 | 52 ± 19 |
S532 [sr] | 50 ± 18 | 54 ± 18 | 53 ± 19 | 52 ± 17 |
δ355 [%] | 7 ± 4 | 7 ± 4 | 4 ± 2 | 6 ± 2 |
δ532 [%] | 10 ± 7 | 7 ± 4 | 2 ± 1 | 9 ± 5 |
CR355/532 | 1.7 ± 0.72 | 1.5 ± 0.7 | 1.5 ± 0.48 | 1.7 ± 0.6 |
CR532/1064 | 1.5 ± 0.8 | 1.6 ± 1.0 | 1.8 ± 1.1 | 1.5 ± 0.8 |
Num. of prof.355 1 | 813 | 630 | 580 | 744 |
Num. of prof.532 | 719 | 584 | 583 | 728 |
PM2.5 [μg/m3] | 21.0 ± 13.7 | 20.4 ± 11.9 | 15.0 ± 10.5 | 18.5 ± 9.8 |
PMc 3 [μg/m3] | 13.7 ± 13.3 | 15.4 ± 13.7 | 7.4 ± 6.1 | 9.2 ± 4.9 |
fSO42− 4 [μg/m3] | 4.6 ± 3.5 (22% 5) | 5.9 ± 3.4 (29%) | 5.3 ± 3.9 (35%) | 4.6 ± 2.9 (25%) |
fNO3− [μg/m3] | 2.6 ± 2.2 (12% 5) | 1.7 ± 1.8 (8%) | 0.7 ± 0.5 (4%) | 1.2 ± 0.8 (7%) |
fWSOC [μg/m3] | 1.5 ± 1.3 (7% 5) | 1.2 ± 0.9 (6%) | 0.6 ± 0.8 (4%) | 0.8 ± 0.9 (4%) |
BC [μg/m3] | 1.1 ± 0.7 (5% 5) | 1.0 ± 0.6 (5%) | 0.9 ± 0.5 (6%) | 1.3 ± 0.9 (7%) |
cSO42− [μg/m3] | 0.8 ± 0.5 (6% 6) | 1.1 ± 0.5 (1%) | 1.2 ± 1.0 (16%) | 0.6 ± 0.5 (7%) |
cNO3− [μg/m3] | 1.3 ± 0.2 (9% 6) | 1.2 ± 0.2 (8%) | 0.7 ± 0.1 (9%) | 1.0 ± 0.1 (10%) |
cSS [μg/m3] | 4.3 ± 2.0 (31% 6) | 3.1 ± 2.2 (20%) | 1.7 ± 1.1 (22%) | 3.6 ± 3.5 (39%) |
RH [%] | 58.5 | 56.3 | 67.8 | 56.3 |
Temp. [°C] | 7.7 | 17.1 | 26.6 | 19.6 |
Winter (DJF) | Spring (MAM) | Summer (JJA) | Autumn (SON) | |
---|---|---|---|---|
colPM2.5 (Hm) | 45.8 (1.5) | 46.9 (1.62) | 34.1 (1.5) | 36.6 (1.38) |
colPMc (Hm) | 24.4 (1.5) | 23.1 (1.62) | 14.6 (1.5) | 19.0 (1.38) |
colAP (Hm) | 5.5 (1.26) | 9.2 (1.38) | 9.9 (1.5) | 5.4 (1.38) |
colBC (Hm) | 2.1 (1.38) | 2.4 (1.38) | 2.7 (1.38) | 2.0 (1.26) |
colSS (Hm) | 11.8 (1.26) | 11.7 (1.38) | 8.4 (1.38) | 11.1 (1.14) |
colDS (Hm) | 50.8 (1.74) | 46.9 (1.62) | 26.2 (1.5) | 35.37 (1.38) |
PM2.5 | 23.9 | 22.9 | 16.4 | 21.3 |
PMc | 13.1 | 11.1 | 7.8 | 11 |
AP | 3.6 | 4.6 | 3.4 | 3.5 |
BC | 1.2 | 1.5 | 1.6 | 1.2 |
SS | 8.7 | 7.5 | 5 | 8.9 |
DS | 24.3 | 21 | 13.3 | 19.4 |
Date (JST) | α355 [/km] | α532 [/km] | S355 [sr] | S532 [sr] | δ355 [%] | δ532 [%] | CR 355/532 | CR 532/1064 | AP [μg/m3] | BC [μg/m3] | DS [μg/m3] | SS [μg/m3] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B1: 8/5 18:00–8/6 6:00 | 0.84 | 0.47 | 82 | 73.2 | 1 | 3 | 1.4 | 2.4 | 29.1 | 7.1 | 34.1 | 5.7 |
B2: 8/9 19:00–8/10 4 :00 | 0.44 | 0.34 | 58.7 | 59.0 | 1 | 2 | 0.9 | 1.7 | 29.1 | 5.1 | 18.6 | 22. |
D2: 2/23 18:00–2/24 6:00 | 0.30 | 0.25 | 43.5 | 37.0 | 13 | 14 | 1.1 | 1.7 | 19.8 | 0.4 | 151.7 | 35.0 |
D4-1: 4/15 19:00–4/16 5:00 | 0.56 | 0.22 | 80.1 | 36.9 | 5 | 4 | 1.7 | 1.2 | 7.4 | 2.0 | 41.5 | 43.8 |
D4-2: 4/16 21:00–4/17 5:00 | 0.36 | 0.14 | 75.0 | 21.2 | 12 | 8 | 0.7 | 1.6 | 2.2 | 0.6 | 63.4 | 45.0 |
D5-1: 4/23 19:00–4/24 5:00 | 0.38 | 0.25 | 62.5 | 56.6 | 7 | 5 | 1.1 | 1.1 | 2.7 | 4.1 | 32.8 | 42.5 |
D5-2: 4/25 19:00–4/26 5:00 | 0.25 | 0.12 | 53.2 | 47.5 | 7 | 7 | 1.4 | 1.2 | - | 1.9 | 35.0 | 28.1 |
Date (JST) | Temp [°C] | RH 1 [%] | RH_cor 2 [%] | PM2.5 [μg/m3] | PMc [μg/m3] | fSO42− 4 [μg/m3] | fNO3− [μg/m3] | cSO42− 5 [μg/m3] | cNO3− [μg/m3] | BC [μg/m3] | SS [μg/m3] |
---|---|---|---|---|---|---|---|---|---|---|---|
B1: 8/5 18:00–8/6 6:00 | 28.9 (30.1) | 73.0 (77)c | 66.4 (68) 3 | 32.3 | 15.3 | 14.8 | 0.43 | 2.2 | 0.5 | 1.1 | - |
B2: 8/9 19:00–8/10 4 :00 | 28.1 (29.6) | 76.1 (81) | 64.1 (73) | 25.5 | 11.9 | 9.8 | 0.6 | 1.5 | 0.7 | 0.7 | 1.7 |
D2: 2/23 18:00–2/24 6:00 | 7.8 (10.6) | 75.2 (87) | 57.4 (68) | 33.1 | 87.9 | 4.8 | 3.3 | 1.8 | 4.1 | 2.3 | 5.8 |
D4-1: 4/15 19:00–4/16 5:00 | 15.2 (16.4) | 56.8 (72) | 54.6 (55) | 44.5 | 38.4 | 14.4 | 5.0 | 1.9 | 4.5 | 1.9 | 4.1 |
D4-2: 4/16 21:00–4/17 5:00 | 15.0 (18.3) | 60.3 (81) | 51.7 (77) | 29.3 | 53.3 | 7.5 | 2.2 | 1.9 | 3.5 | 0.9 | 8.1 |
D5-1: 4/23 19:00–4/24 5:00 | 14.3 (16.7) | 79.7 (89) | 33.7 (39) | 40.7 | 34.5 | 9.5 | 5.8 | 1.0 | 4.1 | 2.4 | 2.0 |
D5-2: 4/25 19:00–4/26 5:00 | 14.0 (16.4) | 64.8 (77) | 21.7 (24) | 37.0 | 30.8 | 12.0 | 3.2 | 1.4 | 3.0 | 2.0 | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, Y.; Nishizawa, T.; Sugimoto, N.; Osada, K.; Yumimoto, K.; Uno, I.; Kudo, R.; Ishimoto, H. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sens. 2018, 10, 937. https://doi.org/10.3390/rs10060937
Hara Y, Nishizawa T, Sugimoto N, Osada K, Yumimoto K, Uno I, Kudo R, Ishimoto H. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sensing. 2018; 10(6):937. https://doi.org/10.3390/rs10060937
Chicago/Turabian StyleHara, Yukari, Tomoaki Nishizawa, Nobuo Sugimoto, Kazuo Osada, Keiya Yumimoto, Itsushi Uno, Rei Kudo, and Hiroshi Ishimoto. 2018. "Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling" Remote Sensing 10, no. 6: 937. https://doi.org/10.3390/rs10060937
APA StyleHara, Y., Nishizawa, T., Sugimoto, N., Osada, K., Yumimoto, K., Uno, I., Kudo, R., & Ishimoto, H. (2018). Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sensing, 10(6), 937. https://doi.org/10.3390/rs10060937