A Multivariate Analysis Framework to Detect Key Environmental Factors Affecting Spatiotemporal Variability of Chlorophyll-a in a Tropical Productive Estuarine-Lagoon System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Analysis
2.3. Satellite Data and Image Processing
2.4. NIR-Red Model Based on MODIS Bands to Retrieve Chl-a
2.5. Time-Series of Chl-a and Environmental Variables
2.6. Spatiotemporal Patterns of Chl-a and Their Key Environmental Factors
3. Results
3.1. Constituent Concentrations
3.2. Spatiotemporal Variability of Chl-a and Driven Factors
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tundisi, J.G.; Tundisi, T.M. Limnologia, 1th ed.; Oficina de Textos: São Paulo, Brazil, 2008; p. 632. [Google Scholar]
- Mitchell, S.B.; Jennerjahn, T.C.; Vizzini, S.; Zhang, W. Changes to processes in estuaries and coastal waters due to intense multiple pressures—An introduction and synthesis. Estuar. Coast. Shelf Sci. 2015, 156, 1–6. [Google Scholar] [CrossRef]
- Hardisty, J. Introduction to estuarine systems. In Estuaries: Monitoring and Modeling the Physical System; Blackwell Publishing: Hoboken, NJ, USA, 2007; pp. 3–22. [Google Scholar]
- Cadee, G.C. Book review: Nutrients and eutrophication in estuaries and coastal waters. Aquat. Ecol. 2004, 38, 616–617. [Google Scholar] [CrossRef]
- Boyer, J.N.; Kelble, C.R.; Ortner, P.B.; Rudnick, D.T. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of florida, USA. Ecol. Indic. 2009, 9, S56–S67. [Google Scholar] [CrossRef]
- Scanes, P.; Coade, G.; Doherty, M.; Hill, R. Evaluation of the utility of water quality based indicators of estuarine lagoon condition in nsw, australia. Estuar. Coast. Shelf Sci. 2007, 74, 306–319. [Google Scholar] [CrossRef]
- Paerl, H.W.; Valdes-Weaver, L.M.; Joyner, A.R.; Winkelmann, V. Phytoplankton indicators of ecological change in the eutrophying pamlico sound system, north carolina. Ecol. Appl. 2007, 17. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Barber, R.T.; Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 1998, 281, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Navalgund, R.R.; Jayaraman, V.; Roy, P.S. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Bukata, R.P. Retrospection and introspection on remote sensing of inland water quality: Like déjà vu all over again. J. Great Lakes Res. 2013, 39, 2–5. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Tyler, A.N.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, J.P.; Carder, K.L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 2006, 101, 13–24. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; English, D.; Cannizzaro, J.; Chen, Z.; Feng, L.; Boler, R.; Kovach, C. Towards a long-term chlorophyll-a data record in a turbid estuary using modis observations. Prog. Oceanogr. 2013, 109, 90–103. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of seawifs and modis for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Chavula, G.; Brezonik, P.; Thenkabail, P.; Johnson, T.; Bauer, M. Estimating chlorophyll concentration in lake malawi from modis satellite imagery. Phys. Chem. Earth Parts A/B/C 2009, 34, 755–760. [Google Scholar] [CrossRef]
- Lyu, H.; Li, X.; Wang, Y.; Jin, Q.; Cao, K.; Wang, Q.; Li, Y. Evaluation of chlorophyll-a retrieval algorithms based on meris bands for optically varying eutrophic inland lakes. Sci. Total Environ. 2015, 530–531, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.J.; Hunter, P.D.; Lankester, T.; Hubbard, S.; Spyrakos, E.; Tyler, A.N.; Présing, M.; Horváth, H.; Lamb, A.; Balzter, H.; et al. Validation of envisat meris algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow lake. Remote Sens. Environ. 2015, 157, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Pan, C.-W.; Chuang, Y.-L.; Chou, L.-S.; Chen, M.-H.; Lin, H.-J. Factors governing phytoplankton biomass and production in tropical estuaries of western taiwan. Cont. Shelf Res. 2016, 118, 88–99. [Google Scholar] [CrossRef]
- Muylaert, K.; Sabbe, K.; Vyverman, W. Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (schelde, belgium). Estuar. Coast. Shelf Sci. 2000, 50, 673–687. [Google Scholar] [CrossRef]
- O’Boyle, S.; Wilkes, R.; McDermott, G.; Ní Longphuirt, S.; Murray, C. Factors affecting the accumulation of phytoplankton biomass in irish estuaries and nearshore coastal waters: A conceptual model. Estuar. Coast. Shelf Sci. 2015, 155, 75–88. [Google Scholar] [CrossRef]
- Rochelle-Newall, E.J.; Chu, V.T.; Pringault, O.; Amouroux, D.; Arfi, R.; Bettarel, Y.; Bouvier, T.; Bouvier, C.; Got, P.; Nguyen, T.M.H.; et al. Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (bach dang estuary, vietnam). Mar. Pollut. Bull. 2011, 62, 2317–2329. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, L.; Carstensen, J.; Abreu, P.C.; Odebrecht, C. Long-term changes of the phytoplankton community and biomass in the subtropical shallow patos lagoon estuary, brazil. Estuar. Coast. Shelf Sci. 2015, 162, 76–87. [Google Scholar] [CrossRef]
- Bierman, P.; Lewis, M.; Ostendorf, B.; Tanner, J. A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecol. Indic. 2011, 11, 103–114. [Google Scholar] [CrossRef]
- Yan, F.; Yuhong, W.; Yihao, L.; Hua, X.; Zhenbo, L. Feature of phytoplankton community and canonical correlation analysis with environmental factors in xiaoqing river estuary in autumn. Procedia Eng. 2012, 37, 19–24. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Kjerfve, B. Regular article: Environmental responses of a tropical coastal lagoon system to hydrological variability: Mundaú-manguaba, brazil. Estuar. Coast. Shelf Sci. 1993, 37, 575–591. [Google Scholar] [CrossRef]
- Guimarães Júnior, S.A.M.; Nascimento, M.C.; Andrade, E.L.; Silva, D.J.R.P.; Diniz, F.A.B. Impactos do uso da terra no complexo estuarino-lagunar mundaú-manguaba—Celmm, alagoas, brasil. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, Brazil, 30 April–5 May 2011. [Google Scholar]
- Melo-Magalhães, E.; Medeiros, P.; Lira, M.; Koening, M.; Moura, A. Determination of eutrophic areas in mundaú/manguaba lagoons, alagoas-brazil, through studies of the phytoplanktonic community. Braz. J. Biol. 2009, 69, 271–280. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association; Eaton, A.D.; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2005. [Google Scholar]
- Vermote, E.F.; Vermeulen, A. Atmospheric Correction Algorithm: Spectral Reflectances (MOD09); Algorithm Technical Background Document (ATBD); University of Maryland: College Park, MD, USA, 1999. [Google Scholar]
- Ibanez, F.; Conversi, A. Prediction of missing values and detection of ‘exceptional events’ in a chronological planktonic series: A single algorithm. Ecol. Model. 2002, 154, 9–23. [Google Scholar] [CrossRef]
- Jackson, J.E. Getting started. In A User’s Guide to Principal Components; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 4–25. [Google Scholar]
- Richman, M.B. Rotation of principal components. J. Climatol. 1986, 6, 293–335. [Google Scholar] [CrossRef]
- Uvo, C.B.; Graham, N.E. Seasonal runoff forecast for northern south america: A statistical model. Water Resour. Res. 1998, 34, 3515–3524. [Google Scholar] [CrossRef]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Zeri, M. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in alagoas state, northeast of brazil. Int. J. Climatol. 2014, 34, 3546–3558. [Google Scholar] [CrossRef]
- Ter Braak, C.J. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef]
- Londe, L.R.; Novo, E.M.L.M.; Barbosa, C.; Araujo, C.A.S. Water residence time affecting phytoplankton blooms: Study case in ibitinga reservoir (são paulo, brazil) using landsat/tm images. Braz. J. Biol. 2016, 76, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.P. Avaliação do Efeito do Assoreamento na Hidrodinâmica e no Tempo de Residência de um Complexo Estuarino Lagunar Tropical. Ph.D. Thesis, Federal University of Alagoas, Alagoas, Brazil, 2017. [Google Scholar]
- De Brito, A.N., Jr.; Fragoso, C.R., Jr.; Larson, M. Tidal exchange in a choked coastal lagoon: A study of mundaú lagoon in northeastern brazil. Reg. Stud. Mar. Sci. 2018, 17, 133–142. [Google Scholar] [CrossRef]
- Lins, R.C.; Fragoso, C.R., Jr.; Cirilo, J.A. Simulações da hidrodinâmica no complexo estuarino lagunar mundaú-manguaba—Celmm/al. In XX Simpósio Brasileiro de Recursos Hídricos; ABRH: Bento Gonçalves, Brazil, 2013. [Google Scholar]
- Costa, T.L.F.; Araújo, M.P.; Knoppers, B.A.; Carreira, R.S. Sources and distribution of parcitulate organic matter of a tropical estuarine-lagoon system from ne brazil as indicated by lipid biomarkers. Aquat. Geochem. 2011, 17, 1–19. [Google Scholar] [CrossRef]
- Wainger, L.; Yu, H.; Gazenski, K.; Boynton, W. The relative influence of local and regional environmental drivers of algal biomass (chlorophyll-a) varies by estuarine location. Estuar. Coast. Shelf Sci. 2016, 178, 65–76. [Google Scholar] [CrossRef]
- Maioli, O.L.G.; Rodrigues, K.C.; Knoppers, B.A.; Azevedo, D.A. Polycyclic aromatic and aliphatic hydrocarbons in mytella charruana, a bivalve mollusk from mundaú lagoon, brazil. Microchem. J. 2010, 96, 172–179. [Google Scholar] [CrossRef]
- Reynolds, C.S. The long, the short and the stalled: On the attributes of phytoplankton selected by physical mixing in lakes and rivers. In Phytoplankton in Turbid Environments: Rivers and Shallow Lakes, Proceedings of the 9th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP), Mont Rigi, Belgium, 10–18 July 1993; Descy, J.-P., Reynolds, C.S., Padisák, J., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 9–21. [Google Scholar]
- Pereira-Barros, J.B. Fisiecologia do Sururu do Nordeste do Brasil—Mytella Falcata (D’orbigny, 1846)—da Lagoa Mundaú, Maceió, Alagoas: Resistência e Crescimento sob Variações da Salinidade no Ambiente Natural. Ph.D. Thesis, Universidade Federal de São Paulo, São Paulo, Brazil, 1972. [Google Scholar]
- Cotovicz Junior, L.C.; Brandini, N.; Knoppers, B.A.; Mizerkowski, B.D.; Sterza, J.M.; Ovalle, A.R.C.; Medeiros, P.R.P. Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern brazil. Environ. Monit. Assess. 2013, 185, 3297–3311. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.C.; Fujii, M.; Rose, A.L.; Bligh, M.; Waite, T.D. Characteristics of the freshwater cyanobacterium microcystis aeruginosa grown in iron-limited continuous culture. Appl. Environ. Microbiol. 2012, 78, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
Features | Mundaú | Manguaba |
---|---|---|
Area (km2) | 27 | 43 |
Volume (106 m3) | 43 | 97.7 |
Average depth (m) | 1.5 | 2.2 |
Tidal range (m) | 0.2 | 0.03 |
Tidal Prism * (106 m3) | 17.3 | 6.1 |
Average freshwater discharge (m3/s) | 35 | 28 |
Retention time (days) | 16 | 36 |
Field Campaign Date | Image Date | Lagoon Site | Number of Water Samples | |||
---|---|---|---|---|---|---|
Collected | Discarded | Calibration | Validation | |||
2013-02-22 | 2013-02-26 | Manguaba | 21 | 21 | 0 | 0 |
2013-05-28 | 2013-05-25 | Manguaba | 21 | 21 | 0 | 0 |
2013-08-29 | 2013-08-29 | Manguaba | 21 | 18 | 0 | 3 |
2013-12-03 | 2013-12-03 | Manguaba | 21 | 12 | 0 | 9 |
2015-05-01 | 2015-05-01 | Mundaú | 12 | 4 | 8 | 0 |
2015-06-10 | 2015-06-09 | Mundaú | 12 | 5 | 7 | 0 |
2015-07-14 | 2015-07-12 | Manguaba | 12 | 0 | 0 | 0 |
2015-09-03 | 2015-09-04 | Manguaba | 12 | 7 | 5 | 0 |
2015-09-08 | 2015-09-08 | Mundaú | 12 | 12 | 0 | 0 |
2015-09-22 | 2015-09-22 | Manguaba | 12 | 6 | 6 | 0 |
2017-03-22 | 2017-03-22 | Mundaú | 15 | 5 | 0 | 10 |
Total | 171 | 123 | 26 | 22 |
Subset | Chl-a (mg/m3) | SST (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | |
Mundaú (N = 51) | 0.97 | 48.90 | 12.86 | 9.72 | 15.15 | 61.00 | 32.80 | 11.99 |
Manguaba (N = 120) | 5.99 | 117.54 | 42.77 | 24.22 | 9.00 | 44.00 | 22.86 | 9.34 |
MMELS (N = 171) | 0.97 | 117.54 | 27.81 | 23.72 | 9.00 | 61.00 | 27.83 | 11.79 |
Site | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Mundaú lagoon | 28.11% | 25.27% | 13.23% | 6.05% |
Manguaba lagoon | 36.70% | 27.93% | 7.16% | 6.71% |
Site | Group | Min | Max | Mean | SD |
---|---|---|---|---|---|
mg/m3 | mg/m3 | mg/m3 | (%) | ||
Mundaú lagoon | HSG1 | 6.42 | 46.88 | 18.81 | 7.18 |
HSG2 | 5.95 | 37.29 | 17.48 | 6.15 | |
HSG3 | 4.22 | 35.44 | 17.04 | 5.95 | |
HSG4 | 6.62 | 51.24 | 22.54 | 7.94 | |
Manguaba lagoon | HSG1 | 8.25 | 79.42 | 23.68 | 10.11 |
HSG2 | 8.27 | 155.10 | 31.05 | 16.69 | |
HSG3 | 13.85 | 139.05 | 41.88 | 25.13 | |
HSG4 | 9.96 | 263.77 | 72.86 | 51.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lins, R.C.; Martinez, J.-M.; Motta Marques, D.D.; Cirilo, J.A.; Medeiros, P.R.P.; Fragoso Júnior, C.R. A Multivariate Analysis Framework to Detect Key Environmental Factors Affecting Spatiotemporal Variability of Chlorophyll-a in a Tropical Productive Estuarine-Lagoon System. Remote Sens. 2018, 10, 853. https://doi.org/10.3390/rs10060853
Lins RC, Martinez J-M, Motta Marques DD, Cirilo JA, Medeiros PRP, Fragoso Júnior CR. A Multivariate Analysis Framework to Detect Key Environmental Factors Affecting Spatiotemporal Variability of Chlorophyll-a in a Tropical Productive Estuarine-Lagoon System. Remote Sensing. 2018; 10(6):853. https://doi.org/10.3390/rs10060853
Chicago/Turabian StyleLins, Regina Camara, Jean-Michel Martinez, David Da Motta Marques, José Almir Cirilo, Paulo Ricardo Petter Medeiros, and Carlos Ruberto Fragoso Júnior. 2018. "A Multivariate Analysis Framework to Detect Key Environmental Factors Affecting Spatiotemporal Variability of Chlorophyll-a in a Tropical Productive Estuarine-Lagoon System" Remote Sensing 10, no. 6: 853. https://doi.org/10.3390/rs10060853
APA StyleLins, R. C., Martinez, J.-M., Motta Marques, D. D., Cirilo, J. A., Medeiros, P. R. P., & Fragoso Júnior, C. R. (2018). A Multivariate Analysis Framework to Detect Key Environmental Factors Affecting Spatiotemporal Variability of Chlorophyll-a in a Tropical Productive Estuarine-Lagoon System. Remote Sensing, 10(6), 853. https://doi.org/10.3390/rs10060853