SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band
Abstract
:1. Introduction
2. Study Area and Data
2.1. Above-Ground Data
2.2. Earth Observing Datasets
2.2.1. SAR Data
2.2.2. SRTM
2.2.3. TRMM
2.2.4. MODIS Active Fire Data (MDC14DL)
2.2.5. Water Body Mask
2.2.6. Urban Areas
3. Methods
3.1. Above-Ground Biomass Data
3.2. SAR Data
3.3. Multivariate Linear Regression Model (MLR)
3.4. Temporal Change Estimation
3.5. Validation and Uncertainty
4. Results
4.1. Modelling Results
4.2. Biomass Maps and Temporal Change
4.3. Comparison with Pan-Tropical Biomass Maps
4.4. Validation and Uncertainty
5. Discussion
5.1. Biomass Estimation
5.2. Temporal Change Estimation
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- World Bank Group. Forest Area (% of Land Area): Indonesia. Available online: https://data.worldbank.org/indicator/AG.LND.FRST.ZS?end=2015&locations=IDtart=2015&type=shaded&view=map&year=2010 (accessed on 2 February 2018).
- Page, S.E.; Hoscilo, A.; Langner, A.; Tansey, K.; Siegert, F.; Limin, S.; Rieley, J.O. Tropical peatland fires in Southeast Asia. In Tropical Fire Ecology; Springer Praxis Books: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Tyrrell, M.L.; Ashton, M.S.; Spalding, D.; Gentry, B. Forests and Carbon: A Synthesis of Science, Management, and Policy for Carbon Sequestration in Forests; Yale School Forestry & Environmental Studies: New Heaven, CT, USA, 2009; Available online: http://environment.yale.edu/publication-series/5947.html (accessed on 7 March 2018).
- Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- IPCC 2014. Climate Change 2014. Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015. [Google Scholar]
- MacKinnon, K.; Hatta, G.; Halim, H.; Mangalik, A. The Ecology of Kalimantan: Indonesian Borneo; Tuttle Publishing: New York, NY, USA, 2013. [Google Scholar]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef]
- Jaenicke, J.; Rieley, J.O.; Mott, C.; Kimman, P.; Siegert, F. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 2008, 147, 151–158. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Janssens-Maenhout, G.; Muntean, M.; Peters, J.A.H.W. Trends in Global CO2 Emissions: 2016 Report; PBL Netherlands Environmental Assessment Agency: Den Haag, The Netherlands, 2015. [Google Scholar]
- Edwards, D.P.; Koh, L.P.; Laurance, W.F. Indonesia’s REDD+ pact: Saving imperilled forests or business as usual? Biol. Conserv. 2012, 151, 41–44. [Google Scholar] [CrossRef]
- Global Canopy Foundation. The REDD Desk. Available online: https://theredddesk.org/countries/search-countries-database?f%5B0%5D=type%3Aactivity&f%5B1%5D=field_project%3A1 (accessed on 7 February 2018).
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- FAO. Assessment of the Status of the Development of the Standards for the Terrestrial Essential Climate Variables; Biomass (T12); FAO: Rome, Italy, 2009. [Google Scholar]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Searle, E.B.; Chen, H.Y.H. Tree size thresholds produce biased estimates of forest biomass dynamics. For. Ecol. Manag. 2017, 400, 468–474. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.A.; Schumacher, J.; Johannsen, V.K.; Saatchi, S.; Fensholt, R. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark. Remote Sens. 2015, 7, 4442–4472. [Google Scholar] [CrossRef]
- Olesk, A.; Praks, J.; Antropov, O.; Zalite, K.; Arumäe, T.; Voormansik, K. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data. Remote Sens. 2016, 8, 700. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.A.; Brolly, M.; Schumacher, J.; Fernández-Landa, A.; Johannsen, V.K.; Marchamalo, M.; Fensholt, R. Understanding ‘saturation’ of radar signals over forests. Nat. Sci. Rep. 2017, 7, 3505. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Reza Sahebi, M.; Mohammadzadeh, A. A review on biomass estimation methods using synthetic aperture radar data. Int. J. Geomat. Geosci. 2011, 1, 776–788. [Google Scholar]
- Mermoz, S.; Le Toan, T.; Villard, L.; Réjou-Méchain, M.; Seifert-Granzin, J. Biomass assessment in the Cameroon savanna using ALOS PALSAR data. Remote Sens. Environ. 2014, 155, 109–119. [Google Scholar] [CrossRef]
- Hamdan, O. Assessment of Alos Palsar L-Band SAR for Estimation of above Ground Biomass in Tropical Forests. Ph.D. Thesis, Univeriti Putra Malaysia, Serdang, Malaysia, 2015. [Google Scholar]
- Wijaya, A. Evaluation of ALOS Palsar mosaic data for estimating stem volume and biomass: A case study from tropical rainforest of Central Indonesia. J. Geogr. 2009, 2, 14–21. [Google Scholar]
- Hamdan, O.; Khali Aziz, H.; Rahman, A. Remotely sensed L-band SAR data for tropical forest biomass estimation. J. Trop. For. Sci. 2011, 23, 318–327. [Google Scholar]
- Mitchard, E.T.A.; Saatchi, S.S.; Lewis, S.L.; Feldpausch, T.R.; Woodhouse, I.H.; Sonké, B.; Rowland, C.; Meir, P. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens. Environ. 2011, 115, 2861–2873. [Google Scholar] [CrossRef]
- Ryan, C.M.; Hill, T.; Woollen, E.; Ghee, C.; Mitchard, E.; Cassells, G.; Grace, J.; Woodhouse, I.H.; Williams, M. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Chang. Biol. 2012, 18, 243–257. [Google Scholar] [CrossRef]
- Wijaya, A.; Liesenberg, V.; Susanti, A.; Karyanto, O.; Verchot, L.V. Estimation of Biomass Carbon Stocks over Peat Swamp Forests using Multi-Temporal and Multi-Polratizations SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 551–556. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Motohka, T.; Shiraishi, T.; Thapa, R.B.; Kawano, N.; Shimada, M. Dependency of forest biomass on full Polarimetric parameters obtained from L-band SAR data for a natural forest in Indonesia. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 3919–3922. [Google Scholar] [CrossRef]
- Kumar, S.; Khati, U.G.; Chandola, S.; Agrawal, S.; Kushwaha, S.P.S. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest. Adv. Space Res. 2017, 60, 571–586. [Google Scholar] [CrossRef]
- Hoekman, D.H.; Quinones, M.J. Land Cover Type and Forest Biomass Assessment in the Colombian Amazon. 1997 International Geoscience and Remote Sensing Symposium 3–8 August 1997, Singapore International Convention & Exhibition Centre, Singapore Remote Sensing—A Scientific Vision for Sustainable Development; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA; IEEE Service Center Distributor: New York, NY, USA, 1997. [Google Scholar]
- Pandey, U.; Kushwaha, S.P.S.; Kachhwaha, T.S.; Kunwar, P.; Dadhwal, V.K. Potential of Envisat ASAR data for woody biomass assessement. Trop. Ecol. 2010, 51, 117–124. [Google Scholar]
- Mitchard, E.T.A.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance Manag. J. 2013, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Avitabile, V.; Herold, M.; Heuvelink, G.B.M.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posa, M.R.C.; Wijedasa, L.S.; Corlett, R.T. Biodiversity and Conservation of Tropical Peat Swamp Forests. BioScience 2011, 61, 49–57. [Google Scholar] [CrossRef]
- Pearson, T.; Walker, S.; Brown, S. Sourcebook for Land Use, Land-use Change and Forestry Projects. Available online: https://theredddesk.org/resources/sourcebook-land-use-land-use-change-and-frestry-projects (accessed on 1 December 2017).
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Englhart, S.; Jubanski, J.; Siegert, F. Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets. Remote Sens. 2013, 5, 2368–2388. [Google Scholar] [CrossRef] [Green Version]
- NASA; JAXA. Tropical Rainfall Measuring Mission. Available online: https://pmm.nasa.gov/trmm (accessed on 27 April 2018).
- NASA. Near Real-Time and MCD14DL MODIS Active Fire Detections (SHP Format): Data Set. Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/c6-mcd14dl (accessed on 27 April 2018).
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Esri, Garmin International, Inc. World Water Bodies Layer. Available online: https://www.arcgis.com/home/item.html?id=e750071279bf450cbd510454a80f2e63 (accessed on 27 April 2018).
- European Space Agency. CCI Land Cover. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download.php (accessed on 27 April 2018).
- Hughes, R.F.; Kauffman, J.B.; Jaramillo, V.J. Biomass, Carbon, and Nutrient Dynamics of Secondary Forests in a Humid Tropical Region of Mexico. Ecology 1999, 80, 1892–1907. [Google Scholar]
- Jubanski, J.; Ballhorn, U.; Kronseder, K.; Franke, J.; Siegert, F. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR. Biogeosciences 2013, 10, 3917–3930. [Google Scholar] [CrossRef]
- Solberg, S.; Astrup, R.; Gobakken, T.; Næsset, E.; Weydahl, D.J. Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sens. Environ. 2010, 114, 2353–2360. [Google Scholar] [CrossRef]
- Ballhorn, U.; Jubanski, J.; Siegert, F. ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia. Remote Sens. 2011, 3, 1957–1982. [Google Scholar] [CrossRef] [Green Version]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Thapa, R.B.; Watanabe, M.; Motohka, T.; Shimada, M. Potential of high-resolution ALOS–PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens. Environ. 2015, 160, 122–133. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F.; Englhart, S.; Keuck, V.; Siegert, F. Modeling Aboveground Biomass in Tropical Forests Using Multi-Frequency SAR Data—A Comparison of Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 298–306. [Google Scholar] [CrossRef]
- Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part I- A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Holm, S.; Nelson, R.; Ståhl, G. Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar. Remote Sens. Environ. 2017, 197, 85–97. [Google Scholar] [CrossRef]
- Saarela, S.; Holm, S.; Grafström, A.; Schnell, S.; Næsset, E.; Gregoire, T.G.; Nelson, R.F.; Ståhl, G. Hierarchical model-based inference for forest inventory utilizing three sources of information. Ann. For. Sci. 2016, 73, 895–910. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Lao, S.; Caspersen, J.P.; Foster, R.B.; Hubbel, S.P. Spatial and temporal variation of biomass in a tropical foret: Resutls from a large cencus plot in Panama. J. Ecol. 2003, 91, 240–252. [Google Scholar] [CrossRef]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Levick, S.R.; Hessenmöller, D.; Schulze, E.-D. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest. Carbon Balance Manag. 2016, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Kachamba, D.; Ørka, H.; Næsset, E.; Eid, T.; Gobakken, T. Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System. Remote Sens. 2017, 9, 610. [Google Scholar] [CrossRef]
- Ruiz, L.; Hermosilla, T.; Mauro, F.; Godino, M. Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests 2014, 5, 936–951. [Google Scholar] [CrossRef]
- Rafael, M.N.-C.; Eduardo, G.-F.; Jorge, G.-G.; Carlos, J.; Ceacero, R.; Rocío, H.-C. Impact of plot size and model selection on forest biomass estimation using airborne LiDAR: A case study of pine plantations in southern Spain. J. For. Sci. 2017, 63, 88–97. [Google Scholar] [CrossRef]
- Mauya, E.W.; Hansen, E.H.; Gobakken, T.; Bollandsås, O.M.; Malimbwi, R.E.; Næsset, E. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance Manag. 2015, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hong, W.; Yirong, W. Analysis of Temporal Decorrelation in Dual-Baseline Polinsar Vegetation Parameter Estimation. In Proceedings of the IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Hamdan, O.; Khali Aziz, H.; Mohd Hasmadi, I. L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. Remote Sens. Environ. 2014, 155, 69–78. [Google Scholar] [CrossRef]
- Suresh, M.; Kiran Chand, T.R.; Fararoda, R.; Jha, C.S.; Dadhwal, V.K. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 651–658. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36, L23401. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef]
- Hamdan, O.; Mohd Hasmadi, I.; Khali Aziz, H.; Norizah, K.; Helmi Zulhaidi, M.S. L-Band saturation level for above-ground Biomass of Dipterocarp forests in Peninsula Malaysia. J. Trop. For. Sci. 2015, 27, 388–399. [Google Scholar]
- Thoma, D.P.; Moran, M.S.; Bryant, R.; Rahman, M.; Holifield-Collins, C.D.; Skirvin, S.; Sano, E.E.; Slocum, K. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. Water Resour. Res. 2006, 42, 4325. [Google Scholar] [CrossRef]
- Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; et al. An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 576–593. [Google Scholar] [CrossRef]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.; White, L. Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance Manag. 2016, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, L.; Mathieu, R.; Main, R.; Kleynhans, W.; Wessels, K.; Asner, G.; Leblon, B. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 234–250. [Google Scholar] [CrossRef]
Test Site | Field Plots | LiDAR | Reference Year | ||
---|---|---|---|---|---|
Acquisition Date | Number of Plots | Acquisition Date | Area [km²] | ||
Pulang Pisau & Kapuas | 2008 | 64 | 2007 | 300 | 2007 |
Kapuas Hulu | 2009–2011 | 82 | 2012 | 420 | 2009 |
Pulang Pisau & Kapuas | 2010–2011 | 87 | 2011 | 7000 | 2009 |
Berau | 2012–2013 | 78 | 2012 | 340 | 2009 |
Malinau | - | - | 2012 | 240 | 2009 |
Pulang Pisau & Kapuas | 2013–2014 | 94 | 2011 * | 7000 | 2016 |
Malinau | 2015 | 24 | 2012 * | 340 | 2016 |
Kapuas Hulu | 2014 | 44 | 2012 * | 240 | 2016 |
Predictor | B | Std. Error | Beta | p Value | R2 | RSE | |
---|---|---|---|---|---|---|---|
Model 2007 | PALSAR-1 HV (dB) | −72.51 | 44.00 | −0.057 | 0.0996 . | 0.75 | 57.2 |
PALSAR-1 HVHH RP | 0.61 | 0.04 | 0.347 | <2 × 10−16 *** | |||
PALSAR-1 HV RP | 22.35 | 1.34 | 0.612 | <2 × 10−16 *** | |||
Model 2009 | PALSAR-1 HV (dB) | −105 | 6.72 | 0.262 | <2 × 10−16 *** | 0.77 | 56.6 |
PALSAR-1 HVHH RP | 2.86 | 0.17 | 0.228 | <2 × 10−16 *** | |||
PALSAR-1 HV RP | −0.00000236 | 0.000005127 | −0.345 | <2 × 10−16 *** | |||
Model 2016 (1) | PALSAR-1 HV (dB) | 8931.00 | 1445.27 | −0.662 | 8.67 × 10−10 *** | 0.63 | 55.8 |
PALSAR-1 HVHH RP | 0.47 | 0.03 | 0.027 | <2 × 10−16 *** | |||
PALSAR-1 HV RP | −36.05 | 2.81 | −0.001 | <2 × 10−16 *** | |||
Sentinel-1 VH (dB) | −3.99 | 203.88 | 0.109 | 0.0503 . | |||
Model 2016 (2) | PALSAR-2 HVHH RP | −67.18 | 2.21 | −0.664 | <2 × 10−16 *** | 0.49 | 73.8 |
Sentinel-1 VH (dB) | 837.25 | 222.78 | 0.082 | 0.000179 *** |
Year | AGB (t/ha) | # of Points | est (t/ha) | ref (t/ha) | RMSE (t/ha) | SD (t/ha) | Bias (t/ha) | Rel. RMSE | R² | NSE |
---|---|---|---|---|---|---|---|---|---|---|
2007 | 0–50 | 134 | 27 | 7 | 41 | 36 | 20 | 5.86 | 0.76 | |
50–100 | 19 | 151 | 68 | 90 | 35 | 84 | 1.32 | |||
100–150 | 34 | 179 | 128 | 68 | 45 | 52 | 0.53 | |||
150–200 | 78 | 219 | 176 | 55 | 35 | 43 | 0.31 | |||
>200 | 154 | 239 | 273 | 62 | 52 | −34 | 0.23 | |||
Overall | 419 | 159 | 149 | 57 | 56 | 10 | 0.38 | 0.77 | ||
2009 | 0–50 | 139 | 48 | 13 | 52 | 38 | 35 | 4.00 | 0.71 | |
50–100 | 21 | 130 | 78 | 71 | 50 | 52 | 0.91 | |||
100–150 | 37 | 175 | 132 | 64 | 49 | 42 | 0.48 | |||
150–200 | 115 | 194 | 178 | 40 | 35 | 18 | 0.22 | |||
>200 | 180 | 207 | 247 | 57 | 41 | −39 | 0.23 | |||
Overall | 492 | 154 | 149 | 53 | 53 | 5 | 0.36 | 0.71 | ||
2016 | 0–50 | 82 | 19 | 9 | 27 | 37 | 10 | 3.00 | 0.70 | |
50–100 | 24 | 130 | 72 | 75 | 48 | 58 | 1.04 | |||
100–150 | 37 | 162 | 126 | 54 | 41 | 36 | 0.43 | |||
150–200 | 115 | 196 | 179 | 41 | 30 | 28 | 0.23 | |||
>200 | 210 | 252 | 210 | 63 | 46 | −42 | 0.30 | |||
Overall | 468 | 168 | 173 | 54 | 53 | −5 | 0.31 | 0.69 |
AGB (t/ha) | 2007 | 2009 | 2016 |
---|---|---|---|
0–50 | 117.9 | 61.3 | 103.6 |
50–100 | 20.4 | 17.5 | 19.3 |
100–150 | 9.8 | 9.3 | 8.2 |
150–200 | 5.8 | 4.8 | 4.8 |
>200 | 6.0 | 6.4 | 5.8 |
Overall | 9.1 | 8.5 | 7.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berninger, A.; Lohberger, S.; Stängel, M.; Siegert, F. SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band. Remote Sens. 2018, 10, 831. https://doi.org/10.3390/rs10060831
Berninger A, Lohberger S, Stängel M, Siegert F. SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band. Remote Sensing. 2018; 10(6):831. https://doi.org/10.3390/rs10060831
Chicago/Turabian StyleBerninger, Anna, Sandra Lohberger, Matthias Stängel, and Florian Siegert. 2018. "SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band" Remote Sensing 10, no. 6: 831. https://doi.org/10.3390/rs10060831
APA StyleBerninger, A., Lohberger, S., Stängel, M., & Siegert, F. (2018). SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band. Remote Sensing, 10(6), 831. https://doi.org/10.3390/rs10060831