Next Article in Journal
Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery
Previous Article in Journal
Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle

Ground-Level PM2.5 Concentration Estimation from Satellite Data in the Beijing Area Using a Specific Particle Swarm Extinction Mass Conversion Algorithm

1,2, 1,3,*, 1,*, 1,2, 1,2 and 1
State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Electronic, Computing and Mathematics, College of Engineering and Technology, University of Derby, Kedleston Road, Derby DE22 1GB, UK
Authors to whom correspondence should be addressed.
Remote Sens. 2018, 10(12), 1906;
Received: 14 October 2018 / Revised: 25 November 2018 / Accepted: 26 November 2018 / Published: 29 November 2018
(This article belongs to the Section Atmosphere Remote Sensing)
PDF [13242 KB, uploaded 29 November 2018]


Particulate matter (PM) has a substantial influence on the environment, climate change and public health. Due to the limited spatial coverage of a ground-level PM2.5 monitoring system, the ground-based PM2.5 concentration measurement is insufficient in many circumstances. In this paper, a Specific Particle Swarm Extinction Mass Conversion Algorithm (SPSEMCA) using remotely sensed data is introduced. Ground-level observed PM2.5, planetary boundary layer height (PBLH) and relative humidity (RH) reanalyzed by the European Centre for Medium-Range Weather Forecasts (ECMWF) and aerosol optical depth (AOD), fine-mode fraction (FMF), particle size distribution, and refractive indices from AERONET (Aerosol Robotic Network) of the Beijing area in 2015 were used to establish this algorithm, and the same datasets for 2016 were used to test the performance of the SPSEMCA. The SPSEMCA involves four steps to obtain PM2.5 values from AOD datasets, and every step has certain advantages: (I) In the particle correction, we use η2.5 (the extinction fraction caused by particles with a diameter less than 2.5 μm) to make an accurate assimilation of AOD2.5, which is contributed to by the specific particle swarm PM2.5. (II) In the vertical correction, we compare the performance of PBLHc retrieved by satellite Lidar CALIPSO data and PBLHe reanalysis by ECMWF. Then, PBLHc is used to make a systematic correction for PBLHe. (III) For extinction to volume conversion, the relative humidity and the FMF are used together to assimilate the AVEC (averaged volume extinction coefficient, μm2/μm3). (IV) PM2.5 measured by ground-based air quality stations are used as the dry mass concentration when calculating the AMV (averaged mass volume, cm3/g) in humidity correction, that will avoid the uncertainties derived from the estimation of the particulate matter density ρ. (V) Multi-Angle Implementation of Atmospheric Correction (MAIAC) 1 km × 1 km AOD was used to retrieve high resolution PM2.5, and a LookUP Table-based Spectral Deconvolution Algorithm (LUT-SDA) FMF was used to avoid the large uncertainties caused by the MODIS FMF product. The validation of PM2.5 from the SPSEMCA algorithm to the AERONET observation data and MODIS monitoring data achieved acceptable results, R = 0.70, RMSE (root mean square error) = 58.75 μg/m3 for AERONET data, R = 0.75, RMSE = 43.38 μg/m3 for MODIS data, respectively. Furthermore, the trend of the temporal and spatial distribution of Beijing was revealed. View Full-Text
Keywords: PM2.5; AOD; fine mode fraction; MODIS PM2.5; AOD; fine mode fraction; MODIS

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Li, Y.; Xue, Y.; Guang, J.; She, L.; Fan, C.; Chen, G. Ground-Level PM2.5 Concentration Estimation from Satellite Data in the Beijing Area Using a Specific Particle Swarm Extinction Mass Conversion Algorithm. Remote Sens. 2018, 10, 1906.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top