Long-Term Arctic Snow/Ice Interface Temperature from Special Sensor for Microwave Imager Measurements
Abstract
:1. Introduction
2. Used Data
2.1. Passive MW Data
2.2. CRREL Buoy Measurements
3. Theoretical Background and Methodology
3.1. Simple Snow/Ice Model for Radiative Transfer
3.2. Apparent Emissivity
3.3. Correction Factor
3.4. Development of the SSM/I-Only Algorithm for the Correction Factor
4. SSM/I Snow/Ice Interface Temperature (SIIT)
Validation against the Buoy Snow/Ice Interface Temperature
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef]
- Jones, P.D.; Wigley, T.M.L. Estimation of global temperature trends: What’s important and what isn’t. Clim. Chang. 2010, 100, 59–69. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Symon, C.; Arris, L.; Heal, B. (Eds.) Arctic Climate Impact Assessment; Cambridge Press: New York, NY, USA, 2004; p. 1042. [Google Scholar]
- Serreze, M.C.; Francis, J.A. The Arctic amplification debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef]
- Comiso, J.C.; Hall, D.K. Climate trends in the Arctic as observed from space. WIREs Clim. Chang. 2014, 5, 389–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2015, 39, L16502. [Google Scholar] [CrossRef]
- Simmonds, I. Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 2015, 56, 18–28. [Google Scholar] [CrossRef]
- Bintanja, R.; Selten, F.M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2014, 509, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Screen, J.A.; Simmonds, I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Clim. Dyn. 2012, 38, 2243–2256. [Google Scholar] [CrossRef] [Green Version]
- Kattsov, V.B.; Walsh, J.E. Twentieth-century trends of Arctic precipitation from observational data and a climate model simulation. J. Clim. 2012, 13, 1362–1370. [Google Scholar] [CrossRef]
- Kopec, B.G.; Feng, X.; Michel, F.A.; Posmentier, E.S. Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. USA 2016, 113, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bintanja, R.; Andry, O. Toward a rain-dominated Arctic. Nat. Clim. Chang. 2017, 7, 263–267. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Xiao, Y.; Yao, Y.; Dai, A.; Simmonds, I.; Franzke, C.L.E. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Clim. 2016, 29, 3925–3947. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kug, J.-S.; Jeong, J.-H.; Jang, Y.-S.; Kim, B.-K.; Folland, C.K.; Min, S.-K.; Son, S.-W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Screen, J.A. Influence of Arctic sea ice on European summer precipitation. Environ. Res. Lett. 2013, 8, 044015. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-M.; Sohn, B.-J. Retrieving the refractive index, emissivity, and surface temperature of polar sea ice from 6.9 GHz microwave measurements: A theoretical development. J. Geophys. Res. Atmos. 2015, 120, 2293–2305. [Google Scholar] [CrossRef] [Green Version]
- Berg, W.; Kroodsma, R.; Kummerow, C.D.; McKague, D.S. Fundamental climate data records of microwave brightness temperature. Remote Sens. 2018, 10, 1306. [Google Scholar] [CrossRef]
- Lee, S.-M.; Sohn, B.-J.; Shi, H. Impact of ice surface and volume scatterings on the microwave sea ice apparent emissivity. J. Geophys. Res. Atmos. 2018, 123. [Google Scholar] [CrossRef]
- Berg, W.; Sapiano, M.R.P.; Horsman, J.; Kummerow, C. Improved geolocation and earth incidence angle information for a fundamental climate data record of the SSM/I sensors. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1504–1513. [Google Scholar] [CrossRef]
- Comiso, J.C. Bootstrap Sea Ice Concentration from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Polashenski, C.; Perovich, D.; Richter-Menge, J.; Elder, B. Seasonal ice mass-balance buoys: Adapting tools to the changing Arctic. Ann. Glaciol. 2011, 52, 18–26. [Google Scholar] [CrossRef]
- Comiso, J.C. Sea ice effective microwave emissivities from satellite passive microwave and infrared observations. J. Geophys. Res. 1983, 88, 7686–7704. [Google Scholar] [CrossRef]
- Masunaga, H.; Matsui, T.; Tao, W.; Hou, A.Y.; Kummerow, C.D.; Nakajima, T.; Bauer, P.; Olson, W.S.; Sekiguchi, M.; Nakajima, T.Y. Satellite Data Simulator Unit: A multisensory, multispectral satellite simulator package. Bull. Am. Meteorol. Soc. 2010, 91, 1625–1632. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, J.A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 136, 553–597. [Google Scholar] [CrossRef]
- Lee, S.-M.; Sohn, B.-J.; Kim, S.-J. Differentiating between first-year and multiyear sea ice in the Arctic using microwave-retrieved ice emissivities. J. Geophys. Res. Atmos. 2017, 122, 5097–5112. [Google Scholar] [CrossRef] [Green Version]
- Sohn, B.J.; Lee, S.-M. Analytical relationship between polarized reflectivities on the specular surface. Int. J. Remote Sens. 2013, 34, 2368–2374. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive: Volume III: From Theory to Applications; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Andersen, S.; Pedersen, L.T.; Heygster, G.; Tonboe, R.; Kaleschke, L. Intercomparison of passive microwave sea ice concentration retrieval over the high concentration Arctic sea ice. J. Geophys. Res. 2009, 112, C08004. [Google Scholar] [CrossRef]
- Eastwood, S.; Lavergne, T.; Tonboe, R. Algorithm Theoretical Basis Document for the OSI SAF Global Reprocessed Sea Ice Concentration Product; EUMETSAT Network Satellite Application Facilities; EUMETSAT: Darmstadt, Germany, 2014. [Google Scholar]
- Cavalieri, D.J.; Crawford, J.P.; Drinkwater, M.R.; Eppler, D.T.; Farmer, L.D.; Jentz, R.R.; Wackerman, C.C. Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Program Special Sensor Microwave Imager. J. Geophys. Res. 1991, 96, 21989–22008. [Google Scholar] [CrossRef]
- Ivanova, N.; Johannessen, O.M.; Pedersen, L.T.; Tonboe, R.T. Retrievals of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7233–7246. [Google Scholar] [CrossRef]
- Li, H.; Pinel, N.; Bourlier, C. Polarized infrared emissivity of 2D sea surfaces with one surface reflection. Remote Sens. Environ. 2012, 124, 299–309. [Google Scholar] [CrossRef]
- Liou, K. An Introduction to Atmospheric Radiation, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Petty, G.W.; Katsaros, K.B. The response of the SSM/I to the marine environment. Part II: A parameterization of the effect of the sea surface slope distribution on emission and reflection. J. Atmos. Ocean. Technol. 1994, 13, 617–628. [Google Scholar]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. 2008, 113, D14220. [Google Scholar] [CrossRef]
Coefficients | a0 | a1 | a2 | a3 |
---|---|---|---|---|
V-polarization | 0.48253852 | 0.00204367 | 0.0000556537 | −0.50878161 |
H-polarization | 0.49223596 | 0.00201050 | −0.0000576901 | −0.52647698 |
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|
0.9811 | 0.9839 | 0.9901 | 0.9798 | 0.9859 | 0.9745 | 0.9848 | 0.9897 | 0.9777 |
# | Period | Starting Point | Ending Point |
---|---|---|---|
1 | 1 December 1993–28 February 1994 | 74.81°N, 138.55°W | 74.38°N, 154.19°W |
2 | 22 December 1997–28 February 1998 | 75.34°N, 150.05°W | 75.11°N, 159.66°W |
3 | 1 December 1997–28 February 1998 | 76.14°N, 147.46°W | 75.11°N, 159.59°W |
4 | 1 December 2003–29 February 2004 | 75.24°N, 135.07°W | 74.89°N, 141.07°W |
5 | 1 December 2006–28 February 2007 | 77.43°N, 139.35°W | 76.74°N, 139.14°W |
6 | 1 December 2006–2 February 2007 | 85.03°N, 128.78°E | 86.98°N, 125.96°E |
7 | 11 December 2007–27 February 2008 | 79.87°N, 155.15°W | 80.85°N, 151.78°W |
8 | 1 December 2007–28 February 2008 | 77.20°N, 135.27°W | 74.64°N, 135.14°W |
9 | 12 December 2007–23 February 2008 | 83.90°N, 112.91°W | 84.00°N, 109.63°W |
10 | 11 December 2007–28 January 2008 | 81.98°N, 119.61°W | 82.01°N, 119.76°W |
11 | 1 December 2008–18 February 2009 | 82.57°N, 115.30°W | 82.09°N, 114.50°W |
12 | 1 December 2010–28 February 2011 | 77.02°N, 149.28°W | 76.23°N, 146.66°W |
13 | 1 December 2010–28 February 2011 | 75.32°N, 142.39°W | 74.10°N, 142.60°W |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-M.; Sohn, B.-J.; Kummerow, C.D. Long-Term Arctic Snow/Ice Interface Temperature from Special Sensor for Microwave Imager Measurements. Remote Sens. 2018, 10, 1795. https://doi.org/10.3390/rs10111795
Lee S-M, Sohn B-J, Kummerow CD. Long-Term Arctic Snow/Ice Interface Temperature from Special Sensor for Microwave Imager Measurements. Remote Sensing. 2018; 10(11):1795. https://doi.org/10.3390/rs10111795
Chicago/Turabian StyleLee, Sang-Moo, Byung-Ju Sohn, and Christian D. Kummerow. 2018. "Long-Term Arctic Snow/Ice Interface Temperature from Special Sensor for Microwave Imager Measurements" Remote Sensing 10, no. 11: 1795. https://doi.org/10.3390/rs10111795