The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050
Abstract
:1. Introduction
2. Materials and Methods
- Peak electrical consumption—Hour 810 of the year.
- Minimum electrical consumption—Hour 4204 of the year.
- The summer solstice—21 June.
- The winter solstice—21 December.
3. Results
3.1. The Energy System
3.2. Barriers and Solutions
3.2.1. Technological Issues
3.2.2. Economic Issues
3.2.3. Institutional and Political Issues
3.2.4. Behavioural Issues
4. Drivers for Solar PV
5. Discussion
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BAU | Business as usual |
BEV | Battery electric vehicle |
CCS | Carbon capture and storage |
CHP | Combined heat and power |
DH | District heating |
DSO | Distribution system operator |
GHG | Greenhouse gas |
LCOE | Levelised cost of electricity |
NG | Natural gas |
PtG | Power-to-gas |
PtL | Power-to-liquid |
PtX | Power-to-chemicals |
PV | Photovoltaic |
RE | Renewable energy |
RET | Renewable energy technology |
SOEC | Solid oxide electrolysis cell |
SOC | State of charge |
TES | Thermal energy storage |
V2G | Vehicle-to-grid |
WACC | Weighted average cost of capital |
e | Electric units |
gas | Gas units |
th | Thermal units |
p | Nominal or peak capacity |
References
- Parliamentary Committee on Energy and Climate Issues. Energy and Climate Roadmap 2050; Technical Report 50/2014; Ministry of Employment and the Economy: Helsinki, Finland, 2014.
- Statistics Finland. Energy. Available online: http://www.stat.fi/til/ene_en.html (accessed on 24 March 2015).
- Huan-Niemi, E.; Niskanen, O.; Rikkonen, P.; Rintamäki, H. Futures climate policy in Finland: Mitigation measures for agricultural greenhouse gas emissions. In Proceedings of the 17th International Conference of the Finland Futures Research Centre and the Finland Futures Academy: Futures Studies Tackling Wicked Problems, Turku, Finland, 11–12 June 2015. [Google Scholar]
- Finnish Ministry of Employment and the Economy. 100-Prosenttisesti Uusiutuviin Energialähteisiin Perustuva Energiajärjestelmä; Finnish Ministry of Employment and the Economy: Helsinki, Finland, 2016.
- Child, M.; Breyer, C. Vision and initial feasibility of a recarbonized Finnish energy system. Renew. Sustain. Energy Rev. 2016, 66, 517–536. [Google Scholar] [CrossRef]
- Schlachtberger, D.P.; Becker, S.; Schramm, S.; Greiner, M. Backup flexibility classes in emerging large-scale renewable electricity systems. Energy Convers. Manag. 2016, 125, 336–346. [Google Scholar] [CrossRef]
- Child, M.; Nordling, A.; Breyer, C. Scenarios for a sustainable energy system in the Åland Islands in 2030. Energy Convers. Manag. 2017, 137, 49–60. [Google Scholar] [CrossRef]
- Salpakari, J.; Mikkola, J.; Lund, P.D. Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and power-to-heat conversion. Energy Convers. Manag. 2016, 126, 649–661. [Google Scholar] [CrossRef]
- Finnish Energy Industries. Statistics and Publications. Available online: http://energia.fi/en/statistics-and-publications (accessed on 30 March 2015).
- Global Data. Power Technologies. Available online: http://www.globaldata.com/ (accessed on 1 April 2015).
- Ahola, J. National Survey Report of PV Power Applications in Finland—2015, St. Ursen; IEA: Paris, France, 2016. [Google Scholar]
- NeroWatt Suomen Suurimmat Aurinkovoimalat, Aurinkoenergia Suomessa. Available online: http://www.aurinkoenergiaa.fi/aurinkoenergiaa.html (accessed on 21 April 2017).
- ENE Solar Systems. ENE Solar Park. Available online: http://www.enesolarsystems.fi/en/solar-park (accessed on 20 January 2017).
- Helsinki Energy. Kivikko Solar Panels Are in High Demand. Available online: https://www.helen.fi/en/news/2015/kivikon-aurinkopaneelit-myyvat-hyvin/ (accessed on 2 August 2015).
- Šúri, M.; Huld, T.A.; Dunlop, E.D.; Ossenbrink, H.A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Breyer, C. Solar PV Market Potential Globally and in Finland. Solar Energy in the North; Helsinki, Finland, 2015. Available online: https://tapahtumat.tekes.fi/uploads/67f7f445/140617__Breyer_SolarEnergyInTheNorth_SolarPVMarketPotentialGoballyAndInFinland_final_pdf-3870.pdf (accessed on 28 July 2017).
- Breyer, C.; Gerlach, A. Global overview on grid-parity. Prog. Photovolt. Res. Appl. 2013, 21, 121–136. [Google Scholar] [CrossRef]
- Vartiainen, E.; Masson, G.; Breyer, C. True competitiveness of solar PV—A European case study. In Proceedings of the 32nd EU PVSEC, Muncih, Bavaria, 20–24 June 2016. [Google Scholar]
- Grubler, A. The costs of the French nuclear scale-up: A case of negative learning by doing. Energy Policy 2010, 38, 5174–5188. [Google Scholar] [CrossRef]
- Vartiainen, E.; Masson, G.; Breyer, C. PV LCOE in Europe 2015–2050. In Proceedings of the 31st European Photovoltaic Solar Energy Conference, Hamburg, Germany, 14–18 September 2015. [Google Scholar]
- Zahedi, A. Maximizing solar PV energy penetration using energy storage technology. Renew. Sustain. Energy Rev. 2011, 15, 866–870. [Google Scholar] [CrossRef]
- Lacey, S. Storage Is the New Solar: Will Batteries and PV Create an Unstoppable Hybrid Force? Greentech Media. Available online: https://www.greentechmedia.com/articles/featured/Storage-Is-the-New-Solar-Will-Batteries-and-PV-Create-an-Unstoppable-Hybri (accessed on 30 June 2015).
- UBS. Will Solar, Batteries and Electric Cars Re-Shape the Electricity System? Q-Series®: Global Utilities, Autos & Chemicals. Available online: http://knowledge.neri.org.nz/assets/uploads/files/270ac-d1V0tO4LmKMZuB3.pdf (accessed on 11 November 2015).
- Werner, C.; Breyer, C.; Gerlach, A.; Beckel, O. Photovoltaic with residential energy storage: An overview on economics, system design and politics. In Proceedings of the 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24–28 September 2012. [Google Scholar]
- International Energy Agency. Residential Prosumers—Drivers and Policy Options (RE Prosumers) Renewable Energy Technology Deployment. Available online: http://iea-retd.org/wp-content/uploads/2014/06/RE-PROSUMERS_IEA-RETD_2014.pdf (accessed on 12 January 2016).
- Fraunhofer ISE. Energy Charts. Available online: https://www.energy-charts.de/index.htm (accessed on 15 April 2015).
- Haukkala, T. Does the sun shine in the High North? Vested interests as a barrier to solar energy deployment in Finland. Energy Res. Soc. Sci. 2015, 6, 50–58. [Google Scholar] [CrossRef]
- Ruggiero, S.; Varho, V.; Rikkonen, P. Transition to distributed energy generation in Finland: Prospects and barriers. Energy Policy 2015, 86, 433–443. [Google Scholar] [CrossRef]
- Sipilä, K.; Konttinen, J.; Kalema, T.; Horttanainen, M.; Hiltunen, E.; Rikkonen, P. Distributed Energy Systems—DESY; VTT Technology 224; VTT: Espoo, Finland, 2015. [Google Scholar]
- Painuly, J.P. Barriers to renewable energy penetration: A framework for analysis. Renew. Energy 2001, 24, 73–89. [Google Scholar] [CrossRef]
- Margolis, R.; Zubov, J. Nontechnical Barriers to Solar Energy Use: Review of Recent Literature. National Renewable Energy Laboratories Tech. Rep. NREL/TP-520-40116; 2006. Available online: http://www.nrel.gov/docs/fy07osti/40116.pdf (accessed on 22 September 2015).
- Timilsina, G.R.; Kurdgelashvili, L.; Narbel, P.A. Solar energy: Markets, economics and policies. Renew. Sustain. Energy Rev. 2012, 16, 449–465. [Google Scholar] [CrossRef]
- Del Río, P.; Unruh, G. Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity. Renew. Sustain. Energy Rev. 2007, 11, 1498–1513. [Google Scholar] [CrossRef]
- Patlitzianas, K.D.; Skylogiannis, G.K.; Papastefanakis, D. Assessing the PV business opportunities in Greece. Energy Convers. Manag. 2013, 75, 651–657. [Google Scholar] [CrossRef]
- Lund, H. EnergyPLAN. Advanced Energy System Analysis Computer Model. Available online: http://www.energyplan.eu/ (accessed on 15 October 2015).
- Fingrid. Electricity Market. Available online: http://www.fingrid.fi/en/electricity-market/Pages/default.aspx (accessed on 1 March 2015).
- Stackhouse, P. Surface Meteorology and Solar Energy (SSE). Release 6.0; National Aeronautic and Space Administration (NASA): Langley. Available online: https://eosweb.larc.nasa.gov/sse/ (accessed on 17 November 2014).
- Stetter, D. Enhancement of the REMix Energy System Model: Global Renewable Energy Potentials, Optimized Power Plant Siting and Scenario Validation. Ph.D. Thesis, Institue of Thermodynamics and Thermal Engineering, University of Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- Sovacool, B.K. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States. Energy Policy 2009, 37, 4500–4513. [Google Scholar] [CrossRef]
- Bogdanov, D.; Breyer, C. North-East Asian Super Grid for 100% renewable energy supply: Optimal mix of energy technologies for electricity, gas and heat supply options. Energy Convers. Manag. 2016, 112, 176–190. [Google Scholar] [CrossRef]
- Bogdanov, D.; Breyer, C. The Role of Solar Energy towards 100% Renewable Power Supply for Israel: Integrating Solar PV, Wind Energy, CSP and Storages. In Proceedings of the 19th Sede Boqer Symposium on Solar Electricity Production, Sede Boqer, Israel, 23–25 February 2015. [Google Scholar]
- Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’Isidoro, M.; Lacal-Arántegui, R. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576–586. [Google Scholar] [CrossRef]
- Gerlach, A.; Stetter, D.; Schmid, J.; Breyer, C. PV and wind power-complementary technologies. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 5–11 September 2011. [Google Scholar]
- SolarServer, E. ON Solar: Jeder Dritte Photovoltaik-Kunde Entscheidet Sich für Solarstrom-Speicher. Solar-Magazin. Available online: http://www.solarserver.de/solar-magazin/nachrichten/aktuelles/2015/kw30/eon-solar-jeder-dritte-photovoltaik-kunde-entscheidet-sich-fuer-solarstrom-speicher.html (accessed on 26 August 2015).
- De Clercq, G. Analysis: Renewables Turn Utilities into Dinosaurs of the Energy World Reuters. Available online: http://www.reuters.com/assets/print?aid=USBRE92709E20130308 (accessed on 7 August 2015).
- International Energy Agency. Technology Roadmap Solar Photovoltaic Energy. Available online: https://www.iea.org/publications/freepublications/publication/pv_roadmap.pdf (accessed on 7 September 2015).
- Breyer, C.; Gerlach, A.; Mueller, J.; Behacker, H.; Milner, A. Grid-Parity Analysis for EU and US Regions and Market Segments—Dynamics of Grid-Parity and Dependence on Solar Irradiance, Local Electricity Prices and PV Progress Ratio. In Proceedings of the 24th EU PVSEC, Hamburg, Germany, 21–25 September 2009. [Google Scholar]
- Gerlach, A.; Breyer, C.; Werner, C. Impact of financing cost on global grid-parity dynamics till 2030. In Proceedings of the 29th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, 22–26 September 2014. [Google Scholar]
- Coady, D.; Parry, I.; Sears, L.; Shang, B. How Large Are Global Energy Subsidies? IMF—International Monetary Fund: Washington, DC, USA, 2015. [Google Scholar]
- Finnish Energy Industries. Suomalaisten Energia-Asenteet 2016. Available online: http://energia.fi/ajankohtaista_ja_materiaalipankki/materiaalipankki/suomalaisten_energia-asenteet_2016.html (accessed on 29 April 2017).
- Shumkov, I. Poland Okays FiT Scheme for PV Arrays up to 10 kW—Report. SeeNews. Available online: http://renewables.seenews.com/news/poland-okays-fit-scheme-for-pv-arrays-up-to-10-kw-report-471588 (accessed on 26 August 2015).
- Lund, P.D. Energy policy planning near grid parity using a price-driven technology penetration model. Technol. Forecast. Soc. Chang. 2015, 90, 389–399. [Google Scholar] [CrossRef]
- Raugei, M.; Sgouridis, S.; Murphy, D.; Fthenakis, V.; Frischknecht, R.; Breyer, C.; Bardi, U.; Barnhart, C.; Buckley, A.; Carbajales-Dale, M.; et al. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy 2017, 102, 377–384. [Google Scholar] [CrossRef]
- Görig, M.; Breyer, C. Energy learning curves of PV systems. Environ. Prog. Sustain. Energy 2016, 35, 914–923. [Google Scholar] [CrossRef]
- Sener, C.; Fthenakis, V. Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs. Renew. Sustain. Energy Rev. 2014, 32, 854–868. [Google Scholar] [CrossRef]
- Breyer, C.; Koskinen, O.; Blechinger, P. Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 49, 610–628. [Google Scholar] [CrossRef]
- European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics 2014–2018. Available online: http://www.cleanenergybusinesscouncil.com/site/resources/files/reports/EPIA_Global_Market_Outlook_for_Photovoltaics_2014–2018_-_Medium_Res.pdf (accessed on 28 September 2015).
- Goldstein, D. Climate-Adaptive Technological Change in a Small Region: A Resource-Based Scenario Approach. Available online: https://sakai.allegheny.edu/access/content/user/dgoldste/Goldstein-TFSC-2June2014.pdf (accessed on 25 September 2015).
- Palzer, A.; Henning, H.M. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part II: Results. Renew. Sustain. Energy Rev. 2014, 30, 1019–1034. [Google Scholar] [CrossRef]
- Agora Energiewende. Stromspeicher in der Energiewende. Available online: http://www.speicherinitiative.at/assets/Uploads/19-AgoraEnergiewende-Speicherstudie-Langfassung.pdf (accessed on 22 November 2015).
- Breyer, C.; Tsupari, E.; Tikka, V.; Vainikka, P. Power-to-gas as an emerging profitable business through creating an integrated value chain. Energy Procedia 2015, 73, 182–189. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Vågnes, E.E.T. Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions. Energy Convers. Manag. 2015, 90, 458–465. [Google Scholar] [CrossRef]
- Lassila, J.; Tikka, V.; Hapaniemi, J.; Child, M.; Breyer, C.; Partanen, J. Nationwide photovoltaic hosting capacity in the Finnish electricity distribution system. In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, Bavaria, Germany, 20–24 June 2016. [Google Scholar]
- Weitemeyer, S.; Kleinhans, D.; Vogt, T.; Agert, C. Integration of Renewable Energy Sources in future power systems: The role of storage. Renew. Energy 2015, 75, 14–20. [Google Scholar] [CrossRef]
- Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [Google Scholar] [CrossRef]
- Child, M.; Breyer, C. The role of energy storage solutions in a 100% renewable Finnish energy system. Energy Procedia 2016, 99, 25–34. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Jadid, S.; Siano, P. Integrated operation of electric vehicles and renewable generation in a smart distribution system. Energy Convers. Manag. 2015, 89, 99–110. [Google Scholar] [CrossRef]
- Morais, H.; Sousa, T.; Vale, Z.; Faria, P. Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment. Energy Convers. Manag. 2014, 82, 268–282. [Google Scholar] [CrossRef]
- Greenpeace & European Renewable Energy Council. Energy [R]evolution. A Sustainable Finland Energy Outlook, 2012. Available online: http://www.greenpeace.org/finland/Global/finland/Dokumentit/Julkaisut/2012/Energy_scenario_report2012.pdf (accessed on 12 February 2015).
- Zakeri, B.; Syri, S.; Rinne, S. Higher renewable energy integration into the existing energy system of Finland. Is there any maximum limit? Energy 2014, 92 Pt 3, 244–259. [Google Scholar] [CrossRef]
- Pöyry Management Consulting Oy. Suomen Energiatase 2050, 2014. Available online: http://www.gasum.fi/globalassets/gasum/tutkimukset-ja-raportit/energiatase2050_julkaisu.pdf (accessed on 16 January 2015).
Electricity Demand (MWe) | Electricity Supply (MWe) | Electricity Storage (MWhe) |
---|---|---|
End-user consumption (individual and industry) | Onshore wind | Stationary batteries |
Cooling | Offshore wind | V2G batteries 1 |
Flexible demand (individual, industry and electric vehicles 1 | Solar PV | |
DH heat pumps | Hydropower | |
PtG Hydrogen | Industrial power production | |
PtG Methane | Combined heat and power | |
Residential heat pumps | Condensing power plants | |
Residential electric heating | V2G | |
V2G (Smart charge BEVs and storage) | Stationary batteries | |
Stationary batteries | ||
Curtailment |
DH Demand (MWth) | DH Supply (MWth) | DH Storage (MWhth) |
---|---|---|
End-user demand | Waste heat from PtG, biogas production, and gasification of biomass 1 | Thermal energy storage capacity |
Storage | Waste-to-energy | |
CHP | ||
CHP heat pumps | ||
Boilers | ||
Storage |
Gas Demand (MWth) | Gas Supply (MWth) | Gas Storage (MWhth) |
---|---|---|
Individual heating | Biogas | Gas storage |
Transportation | Gasification | |
Industry | Methanation | |
Export | Storage | |
CHP | ||
Boilers |
Barriers | Possible Solutions | |
---|---|---|
Technological |
|
|
Economic |
|
|
Institutional and political |
|
|
Behavioural |
|
|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Child, M.; Haukkala, T.; Breyer, C. The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050. Sustainability 2017, 9, 1358. https://doi.org/10.3390/su9081358
Child M, Haukkala T, Breyer C. The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050. Sustainability. 2017; 9(8):1358. https://doi.org/10.3390/su9081358
Chicago/Turabian StyleChild, Michael, Teresa Haukkala, and Christian Breyer. 2017. "The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050" Sustainability 9, no. 8: 1358. https://doi.org/10.3390/su9081358