Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review
Abstract
:1. Introduction
2. Material and Methods
2.1. The Research Setting: Eco-Innovations in the Fertilizer Sector
2.2. Classification of Eco-Innovations
2.3. Technology Acceptance Models
- (1)
- (2)
- (3)
- The involvement of external groups (like co-operations, organizations, advisory council or association) can be a good source and distribution of information, knowledge and application of new technologies or products [54]. External groups can provide their participations with external resources and regular meetings and can therefore stimulate farmers to try something new [67].
- The quality of support can have a strong influence on the eco-innovation adoption [56,62]. This is especially important for innovations with a more technical origin. Here the support must not only provide a platform for buying and selling, but also for learning, repair, assistance and training [68,69]. Also the adoption of process innovations can be stimulated by a good technical or personal support [70,71].
- Information and knowledge exchange can be a strong precursor for innovation adoption [16,56]. According to Carlsson and Jacobsson [72] it is essential to form an exchange of information throw-out in a network to get a better understanding of innovations and therefore a higher willingness to expose innovations.
- Compatibility is especially important for innovations concerning more technical solutions with the need to be fitted to the existing farm equipment [63]. Therefore, it plays a more significant role for disruptive innovations. New technologies or management systems raise definite expectation by the users, in this case farmers [64].
- In our literature review expectations are mainly expressed in higher yields or better yield qualities [73,74], followed by the reduced use of fertilizers [75] or less fertilizer costs [61]. Therefore the variable expectation can be multi-dimensional. In order to regard that fact, we only include expectations referring to the yield and yield quality, because these are the main factors influenced by fertilizers.
- The variable task-technology fit can be a good trigger to describe the adoption of more disruptive innovations. If an innovation involves a large number of different technologies (e.g., IT, agricultural machinery, measuring devices), all these technologies need to be controlled by the farmer [16,65]. Here a better understanding of the underlining technology and a more open attitude towards new technologies can trigger a positive adoption.
- Access to credit can stimulate more expensive eco-innovations with a potential in cost-saving in the near future (e.g., some precision farming technologies [16]).
- Market access combines the fact, that an eco-innovation must be available for the user and the end-products, created with new technologies, must be disposable on markets [16].
2.4. Systematic Literature Review Methodology
3. Results
3.1. Different Eco-Innovations in the Fertilizer Sector
3.2. Results of the Literature Review
3.2.1. Drivers for Disruptive Process Innovations
3.2.2. Drivers for Disruptive Innovations of Other Types
3.2.3. Drivers for Continuous Process Innovations
3.2.4. Drivers for Continuous Product Innovations (Goods)
3.2.5. Drivers for Continuous Product Innovations (Service)
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Innovation Type | Publications | Innovation | |
---|---|---|---|
Disruptive | Process | Adesina and Baidu-Forson, 1995 [108]; Doss and Morris, 2001 [107]; Chianu and Tsuji, 2005 [138]; Oduol and Tsuji, 2005 [143]; Oladoja et al., 2009 [103]; Sirrine et al., 2010 [144]; Giller et al., 2011 [101]; Katungi et al., 2011 [104]; Akudugu et al., 2012 [76]; Kopainsky et al., 2012 [102]; Loyce et al., 2012 [77]; Mapila et al., 2012 [97]; Shiferaw et al., 2013 [67]; Ndiritu et al., 2014 [98]; Tey et al., 2014 [78]; Emerick et al., 2016 [105]; Mahadevan and Asufu-Adjeye, 2015 [106]; Manda et al., 2015 [99]; Stuart et al., 2015 [123]; Handschuch and Wollni, 2016 [100]; Ju et al., 2016 [83]; Roxburgh et al., 2016 [145] | New or advanced cultivation methods [76,97,99,100,101,102,103,106,107,108,138]; sustainable intensification [67,77,78,83,98,104,105,123,143,144,145] |
Other type | Strickland et al., 1998 [116]; Swinton and Lowenberg-Deborer, 2001 [118]; Batte and Arnold, 2003 [73]; Daberkow and McBride, 2003 [109]; Marra et al., 2003 [61]; Adrian et al., 2005 [75]; Jochinke et al., 2007 [111]; Knowler and Bradshaw, 2007 [80]; Namara et al., 2007 [81]; Ogbonna et al., 2007 [112]; Takăcs-György, 2007 [119]; Gowing and Palmer, 2008 [71]; Reichardt et al.; 2009 [68]; Rezaei-Moghaddam and Salehi, 2010 [44]; Dalton et al., 2011 [146]; Kutter et al., 2011 [113]; Aubert et al., 2012 [79]; Chauhan et al., 2012 [82]; Nikkila et al., 2012 [114]; Tey and Brindal, 2012 [57]; Busse et al., 2014 [74]; Davidson et al., 2014 [110]; Nhamo et al., 2014 [147]; Watcharaanantapong et al., 2014 [69]; Handford et al., 2015 [84]; Eastwood et al., 2017 [115] | Precision farming [44,57,61,68,69,73,74,75,79,109,110,111,113,114,115,116,119]; conserved farming [71,80,81,82,112,118,146,147]; nanotechnology [84] | |
Continuous | Process | Smale and Heise, 1993 [127]; Pandey, 1999 [85]; Haneklaus et al., 2002 [148]; Mudhara et al., 2003 [131]; Mafongoya et al., 2006 [70]; Ajayi et al., 2007 [120]; Ajayi, 2007 [129]; Akinnifesi et al., 2008 [149]; Lamba, 2009 [121]; Ajayi et al., 2011 [125]; Chen et al., 2011 [150]; Kanellolpoulos et al., 2012 [151]; Robertson et al., 2012 [117]; Siddique et al., 2012 [128]; Simpson et al., 2013 [86]; Kamau et al., 2014 [129]; Simpson et al., 2014 [87]; Wainaina et al., 2014 [122]; Weber and McCann, 2014 [126]; Lamers et al., 2015 [130]; Wossen et al., 2015 [124]; Magrini et al., 2016 [94]; Russo et al., 2016 [152] | Nutrient management [85,86,87,117,122,124,126,127,130,150,152]; fertilizer management [148]; leguminous intercropping [70,93,94,120,125,128,131,149]; management technologies [121,129,151] |
Product (Good) | Asfaw and Admassie, 2004 [137]; Alene et al., 2008 [134]; Khumairoh et al., 2012 [153]; Lambrecht et al., 2014 [89]; Nin-Pratt and McBride, 2014 [90]; Chang and Tsai, 2015 [132]; Ciceri et al., 2015 [135]; Hasler et al., 2016 [9]; Herrera et al., 2016 [88]; Sheahan et al., 2016 [136] | Mineral fertilizer [89,90,132,134,135,136,137,153]; fertilizer made of secondary resources [9]; stabilized nutrients [9,88] | |
Product (Service) | Rerkasem, 2005 [154]; Hayman et al., 2007 [91]; Schreinemachers et al., 2007 [139]; Chianu et al., 2012 [133]; Moreau et al., 2013 [141]; Van Rees et al.; 2014 [142]; Huang et al., 2015 [140]; Abate et al., 2016 [95]; Zhang et al., 2016 [92]; Zhao et al., 2016 [96] | Knowledge training [95,96,140]; supporting service [133]; diagnose tools [91,92,139,141,142,154] |
References
- United Nations. Key Findings and Advance Tables. In World Population Prospects: The 2015 Revision, ESA/P/WP.241; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Hazell, P.; Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 495–515. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Hine, R. Reducing Food Poverty with Sustainable Agriculture: A Summary of New Evidence; University of Essex: Essex, UK, 2011. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Kemp, R.; Schot, J.; Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strateg. Manag. 1998, 10, 175–198. [Google Scholar] [CrossRef]
- Renni, R.; Heffer, P. Anticipated Impact of Modern Biotechnology on Nutient Use Efficieny: Consequences for the Fertilizer Industry, In Proceedings of the TFI/FIRT Fertilizer Outlook and Technology Conference 2010, Savannah, GA, USA, 16–18 November 2010.
- Hasler, K.; Olfs, H.W.; Omta, O.; Borring, S. Drivers for the adoption of eco-innovations in the German fertilizer supply chain. Sustainability 2016, 8, 682. [Google Scholar] [CrossRef]
- Del Río, P.; Peñasco, C.; Romero-Jordán, D. What drives eco-innovators? A critical review of the empirical literature based on econometric methods. J. Clean. Prod. 2016, 112, 2158–2170. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Díaz-García, C.; González-Moreno, Á.; Sáez-Martínez, F.J. Eco-innovation: Insights from a literature review. Innovation 2015, 17, 6–23. [Google Scholar] [CrossRef]
- Bossle, M.B.; de Barcellos, M.D.; Vieira, L.M.; Sauvée, L. The drivers for adoption of eco-innovation. J. Clean. Prod. 2016, 113, 861–872. [Google Scholar] [CrossRef]
- Hellström, M.; Tsvetkova, A.; Gustafsson, M.; Wikström, K. Collaboration mechanisms for business models in distributed energy ecosystems. J. Clean. Prod. 2015, 102, 226–236. [Google Scholar] [CrossRef]
- Tsvetkova, A.; Gustafsson, M. Business models for industrial ecosystems: A modular approach. J. Clean. Prod. 2012, 29, 246–254. [Google Scholar] [CrossRef]
- Diederen, P.; van Meijl, H.; Wolters, A. Modernisation in agriculture: What makes a farmer adopt an innovation? Int. J. Agric. Resour. Gov. Ecol. 2003, 2, 328–342. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quart. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; p. 576. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Christensen, C.M.; Raynor, M.E.; McDonald, R. Disruptive innovation. Harv. Bus. Rev. 2015, 93, 44–53. [Google Scholar]
- Hargadon, A.B. Firms as knowledge brokers: Lessons in pursuing continuous innovation. Calif. Manag. Rev. 1998, 40, 209–227. [Google Scholar] [CrossRef]
- Garcia, R.; Calantone, R. A critical look at technological innovation typology and innovativeness terminology: A literature review. J. Prod. Innov. Manag. 2002, 19, 110–132. [Google Scholar] [CrossRef]
- Markides, C. Disruptive innovation: In need of better theory. J. Prod. Innov. Manag. 2006, 23, 19–25. [Google Scholar] [CrossRef]
- Boer, H.; Gertsen, F. From continuous improvement to continuous innovation: A (retro) (per) spective. Int. J. Technol. Manag. 2003, 26, 805–827. [Google Scholar] [CrossRef]
- Spiertz, H. Food production, crops and sustainability: Restoring confidence in science and technology. Curr. Opin. Environ. Sustain. 2010, 2, 439–443. [Google Scholar] [CrossRef]
- Ruttan, V.W. Productivity groth in world agriculture: Sources and constraints. J. Econ. Perspect. 2002, 19, 161–1984. [Google Scholar] [CrossRef]
- Kitzes, J.; Wackernagel, M.; Loh, J.; Peller, A.; Goldfinger, S.; Cheng, D.; Tea, K. Shrink and share: Humanity´s present and future ecological footprint. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Rennings, K. Redefining innovation-eco-innovation research and the contribution from ecological economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- Ekins, P. Eco-innovation for environmental sustainability: Concepts, progress and policies. Int. Econ. Econ. Policy 2010, 7, 267–290. [Google Scholar] [CrossRef]
- Kemp, R.; Pearson, P. Final Report of the MEI Project Measuring Eco Innovation; UM Merit.: Maastricht, The Netherlands, 2008. [Google Scholar]
- Christensen, C.M. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail; Harvard Business Review Press: Brighton, MA, USA, 2013. [Google Scholar]
- Assink, M. Inhibitors of disruptive innovation capability: A conceptual model. Eur. J. Innov. Manag. 2006, 9, 215–233. [Google Scholar] [CrossRef]
- Law, J. A Dictionary of Business and Management; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Kimberly, J.R.; Evanisko, M.J. Organizational innovation: The influence of individual, organizational, and contextual factors on hospital adoption of technological and administrative innovations. Acad. Manag. J. 1981, 24, 689–713. [Google Scholar] [CrossRef]
- Jansen, J.J.; van den Bosch, F.A.; Volberda, H.W. Exploratory innovation, exploitative innovation, and performance: Effects of organizational antecedents and environmental moderators. Manag. Sci. 2006, 52, 1661–1674. [Google Scholar] [CrossRef]
- Damanpour, F.; Walker, R.M.; Avellaneda, C.N. Combinative effects of innovation types and organizational performance: A longitudinal study of service organizations. J. Manag. Stud. 2009, 46, 650–675. [Google Scholar] [CrossRef]
- Utterback, J.M.; Abernathy, W.J. A dynamic model of process and product innovation. Omega 1975, 3, 639–656. [Google Scholar] [CrossRef]
- Kotabe, M.; Murray, J.Y. Linking product and process innovations and modes of international sourcing in global competition: A case of foreign multinational firms. J. Int. Bus. Stud. 1990, 21, 383–408. [Google Scholar] [CrossRef]
- Edquist, C. The Systems of Innovation Approach and Innovation Policy: An account of the state of the art. In Proceedings of the DRUID Conference, Aalborg, Denmark, 12–15 June 2001. [Google Scholar]
- Hamel, G. The why, what, and how of management innovation. Harv. Bus. Rev. 2006, 84, 72. [Google Scholar] [PubMed]
- Fuller, F.F. Concerns of teachers: A developmental conceptualization. Am. Educ. Res. J. 1969, 6, 207–226. [Google Scholar] [CrossRef]
- Hall, G.E. The concerns-based approach to facilitating change. Educ. Horiz. 1979, 57, 202–208. [Google Scholar]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1977. [Google Scholar]
- Rezaei-Moghaddam, K.; Salehi, S. Agricultural specialists intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model. Afr. J. Agric. Res. 2010, 5, 1191–1199. [Google Scholar]
- Flett, R.; Alpass, F.; Humphries, S.; Massey, C.; Morriss, S.; Long, N. The technology acceptance model and use of technology in New Zealand dairy farming. Agric. Syst. 2004, 80, 199–211. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable food consumption: Exploring the consumer “attitude–behavioral intention” gap. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Frondel, M.; Horbach, J.; Rennings, K. What triggers environmental management and innovation? Empirical evidence for Germany. Ecol. Econ. 2008, 66, 153–160. [Google Scholar] [CrossRef]
- Horbach, J. Determinants of environmental innovation—New evidence from German panel data sources. Res. Policy 2008, 37, 163–173. [Google Scholar] [CrossRef]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of eco-innovations by type of environmental impact—The role of regulatory push/pull, technology push and market pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef]
- Rehfeld, K.; Rennings, K.; Ziegler, A. Determinants of environmental product innovations and the role of integrated product policy—An empirical analysis. Ecol. Econ. 2007, 61, 91–100. [Google Scholar] [CrossRef]
- Morgan, K.; Murdoch, J. Organic vs. conventional agriculture: Knowledge, power and innovation in the food chain. Geoforum 2000, 31, 159–173. [Google Scholar] [CrossRef]
- Demirel, P.; Kesidou, E. Stimulating different types of eco-innovation in the UK: Government policies and firm motivations. Ecol. Econ. 2011, 70, 1546–1557. [Google Scholar] [CrossRef]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Jackson, C.M.; Chow, S.; Leitch, R.A. Toward an understanding of the behavioral intention to use an information system. Decis. Sci. 1997, 28, 357–389. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Ackerman, P.L. A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organ. Behav. Hum. Decis. Process. 2000, 83, 33–60. [Google Scholar] [CrossRef] [PubMed]
- Negro, S.O.; Hekkert, M.P.; Smits, R.E. Explaining the failure of the Dutch innovation system for biomass digestion—A functional analysis. Energy Policy 2007, 35, 925–938. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Straub, D.; Keil, M.; Brenner, W. Testing the technology acceptance model across cultures: A three country study. Inf. Manag. 1997, 33, 1–11. [Google Scholar] [CrossRef]
- Davis, F.D.; Venkatesh, V. Toward preprototype user acceptance testing of new information systems: Implications for software project management. IEEE Trans. Eng. Manag. 2004, 51, 31–46. [Google Scholar] [CrossRef]
- Szajna, B. Empirical evaluation of the revised technology acceptance model. Manag. Sci. 1996, 42, 85–92. [Google Scholar] [CrossRef]
- Marra, M.; Pannell, D.J.; Ghadim, A.A. The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: Where are we on the learning curve? Agric. Syst. 2003, 75, 215–234. [Google Scholar] [CrossRef]
- Aslan, S.A.; Gundogdu, K.; Yaslioglu, E.; Kirmikil, M.; Arici, I. Personal, physical and socioeconomic factors affecting farmers’ adoption of land consolidation. Span. J. Agric. Res. 2007, 5, 204–213. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Quart. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Dishaw, M.T.; Strong, D.M. Extending the technology acceptance model with task–technology fit constructs. Inf. Manag. 1999, 36, 9–21. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G. Why do not men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quart. 2000, 24, 115–139. [Google Scholar] [CrossRef]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Reichardt, M.; Jurgens, C.; Kloble, U.; Huter, J.; Moser, K. Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities. Precis. Agric. 2009, 10, 525–545. [Google Scholar] [CrossRef]
- Watcharaanantapong, P.; Roberts, R.K.; Lambert, D.M.; Larson, J.A.; Velandia, M.; English, B.C.; Rejesus, R.M.; Wang, C.G. Timing of precision agriculture technology adoption in US cotton production. Precis. Agric. 2014, 15, 427–446. [Google Scholar] [CrossRef]
- Mafongoya, P.; Bationo, A.; Kihara, J.; Waswa, B.S. Appropriate technologies to replenish soil fertility in southern Africa. Nutr. Cycl. Agroecosyst. 2006, 76, 137–151. [Google Scholar] [CrossRef]
- Gowing, J.W.; Palmer, M. Sustainable agricultural development in sub-Saharan Africa: The case for a paradigm shift in land husbandry. Soil Use Manag. 2008, 24, 92–99. [Google Scholar] [CrossRef]
- Carlsson, B.; Jacobsson, S. In Search of Useful Public Policies: Key Lessons and Issues for Policy Makers. In Technological Systems and Industrial Dynamics; Carlsson, B., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Batte, M.T.; Arnholt, M.W. Precision farming adoption and use in Ohio: Case studies of six leading-edge adopters. Comput. Electron. Agric. 2003, 38, 125–139. [Google Scholar] [CrossRef]
- Busse, M.; Doernberg, A.; Siebert, R.; Kuntosch, A.; Schwerdtner, W.; Konig, B.; Bokelmann, W. Innovation mechanisms in German precision farming. Precis. Agric. 2014, 15, 403–426. [Google Scholar] [CrossRef]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ perceptions and attitudes toward precision agriculture technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Akudugu, M.A.; Guo, E.; Dadzie, S.K. Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions. J. Biol. Agric. Healthc. 2012, 2, 3. [Google Scholar]
- Loyce, C.; Meynard, J.M.; Bouchard, C.; Rolland, B.; Lonnet, P.; Bataillon, P.; Bernicot, M.H.; Bonnefoy, M.; Charrier, X.; Debote, B.; et al. Growing winter wheat cultivars under different management intensities in France: A multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Res. 2012, 125, 167–178. [Google Scholar] [CrossRef]
- Tey, Y.S.; Li, E.; Bruwer, J.; Abdullah, A.M.; Brindal, M.; Radam, A.; Ismail, M.M.; Darham, S. The relative importance of factors influencing the adoption of sustainable agricultural practices: A factor approach for Malaysian vegetable farmers. Sustain. Sci. 2014, 9, 17–29. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Namara, R.E.; Hussain, I.; Bossio, D.; Verma, S. Innovative land and water management approaches in Asia: Productivity impacts, adoption prospects and poverty outreach. Irrig. Drain. 2007, 56, 335–348. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Mahajan, G.; Sardana, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice-wheat cropping system in the indo-gangetic plains of the Indian subcontinent: Problems, opportunities, and strategies. In Advances in Agronomy; Sparks, D.L., Ed.; Academic press: New York, NY, USA, 2012; Volume 117, pp. 315–369. [Google Scholar]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Handford, C.E.; Dean, M.; Spence, M.; Henchion, M.; Elliott, C.T.; Campbell, K. Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 2015, 57, 24–34. [Google Scholar] [CrossRef]
- Pandey, S. Adoption of nutrient management technologies for rice production: Economic and institutional constraints and opportunities. Nutr. Cycl. Agroecosyst. 1999, 53, 103–111. [Google Scholar] [CrossRef]
- Simpson, R.J.; Richardson, A.E.; Nichols, S.N.; Crush, J.R. Efficient use of phosphorus in temperate grassland systems. In Revitalising Grasslands to Sustain our Communities, Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; New South Wales Department of Primary Industry: Orange, Australia, 2013. [Google Scholar]
- Simpson, R.J.; Richardson, A.E.; Nichols, S.N.; Crush, J.R. Pasture plants and soil fertility management to improve the efficiency of phosphorus fertiliser use in temperate grassland systems. Crop Pasture Sci. 2014, 65, 556–575. [Google Scholar] [CrossRef]
- Herrera, J.M.; Rubio, G.; Haner, L.L.; Delgado, J.A.; Lucho-Constantino, C.A.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6. [Google Scholar] [CrossRef]
- Lambrecht, I.; Vanlauwe, B.; Merckx, R.; Maertens, M. Understanding the process of agricultural technology adoption: Mineral fertilizer in eastern DR Congo. World Dev. 2014, 59, 132–146. [Google Scholar] [CrossRef]
- Nin-Pratt, A.; McBride, L. Agricultural intensification in Ghana: Evaluating the optimist’s case for a Green Revolution. Food Policy 2014, 48, 153–167. [Google Scholar] [CrossRef]
- Hayman, P.; Crean, J.; Mullen, J.; Parton, K. How do probabilistic seasonal climate forecasts compare with other innovations that Australian farmers are encouraged to adopt? Aust. J. Agric. Res. 2007, 58, 975–984. [Google Scholar] [CrossRef]
- Zhang, W.F.; Cao, G.X.; Li, X.L.; Zhang, H.Y.; Wang, C.; Liu, Q.Q.; Chen, X.P.; Cui, Z.L.; Shen, J.B.; Jiang, R.F.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.C.; Akinnifesi, F.K.; Sileshi, G.; Chakeredza, S. Adoption of renewable soil fertility replenishment technologies in the southern African region: Lessons learnt and the way forward. In Natural Resources Forum; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; Volume 31, pp. 306–317. [Google Scholar]
- Magrini, M.B.; Anton, M.; Cholez, C.; Corre-Hellou, G.; Duc, G.; Jeuffroy, M.H.; Meynard, J.M.; Pelzer, E.; Voisin, A.S.; Walrand, S. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol. Econ. 2016, 126, 152–162. [Google Scholar] [CrossRef]
- Abate, G.T.; Rashid, S.; Borzaga, C.; Getnet, K. Rural finance and agricultural technology adoption in ethiopia: Does the institutional design of lending organizations matter? World Dev. 2016, 84, 235–253. [Google Scholar] [CrossRef]
- Zhao, P.F.; Cao, G.X.; Zhao, Y.; Zhang, H.Y.; Chen, X.P.; Li, X.L.; Cui, Z.L. Training and organization programs increases maize yield and nitrogen—Use efficiency in smallholder agriculture in China. Agron. J. 2016, 108, 1944–1950. [Google Scholar] [CrossRef]
- Mapila, M.; Kirsten, J.F.; Meyer, F. The impact of agricultural innovation system interventions on rural livelihoods in Malawi. Dev. South. Afr. 2012, 29, 303–315. [Google Scholar] [CrossRef]
- Ndiritu, S.W.; Kassie, M.; Shiferaw, B. Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy 2014, 49, 117–127. [Google Scholar] [CrossRef]
- Manda, J.; Alene, A.D.; Gardebroek, C.; Kassie, M.; Tembo, G. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from Rural Zambia. J. Agric. Econ. 2016, 67, 130–153. [Google Scholar] [CrossRef]
- Handschuch, C.; Wollni, M. Improved production systems for traditional food crops: The case of finger millet in western Kenya. Food Secur. 2016, 8, 783–797. [Google Scholar] [CrossRef]
- Giller, K.E.; Tittonell, P.; Rufino, M.C.; van Wijk, M.T.; Zingore, S.; Mapfumo, P.; Adjei-Nsiah, S.; Herrero, M.; Chikowo, R.; Corbeels, M. Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric. Syst. 2011, 104, 191–203. [Google Scholar] [CrossRef]
- Kopainsky, B.; Troger, K.; Derwisch, S.; Ulli-Beer, S. Designing sustainable food security policies in Sub-Saharan African countries: How social dynamics over-ride utility evaluations for good and bad. Syst. Res. Behav. Sci. 2012, 29, 575–589. [Google Scholar] [CrossRef]
- Oladoja, M.; Adeokun, O.; Fapojuwo, O. Effect of innovation adoptions on cassava production by farmers in Ijebu North Local Government Area, Ogun State of Nigeria. J. Food Agric. Environ. 2009, 7, 616–619. [Google Scholar]
- Katungi, E.; Horna, D.; Gebeyehu, S.; Sperling, L. Market access, intensification and productivity of common bean in Ethiopia: A microeconomic analysis. Afr. J. Agric. Res. 2011, 6, 476–487. [Google Scholar]
- Emerick, K.; de Janvry, A.; Sadoulet, E.; Dar, M.H. Technological innovations, downside risk, and the modernization of agriculture. Am. Econ. Rev. 2016, 106, 1537–1561. [Google Scholar] [CrossRef]
- Mahadevan, R.; Asafu-Adjaye, J. Exploring the potential for green revolution: A choice experiment on maize farmers in Northern Ghana. Afr. J. Agric. Resour. Econ. 2015, 10, 207–221. [Google Scholar]
- Doss, C.R.; Morris, M.L. How does gender affect the adoption of agricultural innovations? The case of improved maize technology in Ghana. Agric. Econ. 2001, 25, 27–39. [Google Scholar] [CrossRef]
- Adesina, A.A.; Baidu-Forson, J. Farmers’ perceptions and adoption of new agricultural technology: Evidence from analysis in Burkina Faso and Guinea, West Africa. Agric. Econ. 1995, 13, 1–9. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Davidson, E.; Galloway, J.; Millar, N.; Leach, A. N-related greenhouse gases in North America: innovations for a sustainable future. Curr. Opin. Environ. Sustain. 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Jochinke, D.C.; Noonon, B.J.; Wachsmann, N.G.; Norton, R.M. The adoption of precision agriculture in an Australian broadacre cropping system—Challenges and opportunities. Field Crops Res. 2007, 104, 68–76. [Google Scholar] [CrossRef]
- Ogbonna, K.I.; Idiong, I.C.; Ndifon, H.M. Adoption of soil management and conservation technologies by small scale crop farmers in South Eastern Nigeria: Implications for sustainable crop production. Agric. J. 2007, 2, 294–298. [Google Scholar]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Nikkila, R.; Wiebensohn, J.; Nash, E.; Seilonen, I.; Koskinen, K. A service infrastructure for the representation, discovery, distribution and evaluation of agricultural production standards for automated compliance control. Comput. Electron. Agric. 2012, 80, 80–88. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Nettle, R. Dynamics and distribution of public and private research and extension roles for technological innovation and diffusion: Case studies of the implementation and adaptation of precision farming technologies. J. Rural Stud. 2017, 49, 1–12. [Google Scholar] [CrossRef]
- Strickland, R.M.; Ess, D.R.; Parsons, S.D. Precision farming and precision pest management: The power of new crop production technologies. J. Nematol. 1998, 30, 431–435. [Google Scholar] [PubMed]
- Robertson, M.; Llewellyn, R.; Mandel, R.; Lawes, R.; Bramley, R.; Swift, L.; Metz, N.; O’Callaghan, C. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Swinton, S.M.; Lowenberg-Deboer, J. Global adoption of precision agriculture technologies: Who, when and why. In Proceedings of the 3rd European Conference on Precision Agriculture, Montpellier, France, 18–20 June 2001. [Google Scholar]
- Takăcs-György, K. Economic aspects of chemical reduction on farming—Future role of precision farming. Acta Sci. Pol. Oecon. 2007, 6, 115–120. [Google Scholar] [CrossRef]
- Ajayi, O.C. User acceptability of sustainable soil fertility technologies: Lessons from farmers’ knowledge, attitude and practice in Southern Africa. J. Sustain. Agric. 2007, 30, 21–40. [Google Scholar] [CrossRef]
- Lamba, P.; Filson, G.; Adekunle, B. Factors affecting the adoption of best management practices in southern Ontario. Environmentalist 2009, 29, 64. [Google Scholar] [CrossRef]
- Wainaina, P.; Tongruksawattana, S.; Qaim, M. Tradeoffs and complementarities in the adoption of improved seeds, fertilizer, and natural resource management technologies in Kenya. Agric. Econ. 2016, 47, 351–362. [Google Scholar] [CrossRef]
- Stuart, D.; Basso, B.; Marquart-Pyatt, S.; Reimer, A.; Robertson, G.P.; Zhao, J. The need for a coupled human and natural systems understanding of agricultural nitrogen loss. BioScience 2015, 65, 571–578. [Google Scholar] [CrossRef]
- Wossen, T.; Berger, T.; Di Falco, S. Social capital, risk preference and adoption of improved farm l and management practices in Ethiopia. Agric. Econ. 2015, 46, 81–97. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Place, F.; Akinnifesi, F.K.; Sileshi, G.W. Agricultural success from Africa: The case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). Int. J. Agric. Sustain. 2011, 9, 129–136. [Google Scholar] [CrossRef]
- Weber, C.; McCann, L. Adoption of nitrogen-efficient technologies by US corn farmers. J. Environ. Qual. 2015, 44, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Smale, M.; Heisey, P.W. Simultaneous estimation of seed-fertilizer adoption decisions: An application to hybrid maize in Malawi. Technol. Forecast. Soc. Chang. 1993, 43, 353–368. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Johansen, C.; Turner, N.C.; Jeuffroy, M.H.; Hashem, A.; Sakar, D.; Gan, Y.T.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 2012, 32, 45–64. [Google Scholar] [CrossRef]
- Kamau, M.; Smale, M.; Mutua, M. Farmer demand for soil fertility management practices in Kenya’s grain basket. Food Secur. 2014, 6, 793–806. [Google Scholar] [CrossRef]
- Lamers, J.P.A.; Bruentrup, M.; Buerkert, A. Financial performance of fertilisation strategies for sustainable soil fertility management in Sudano-Sahelian West Africa 1: Profitability of annual fertilisation strategies. Nutr. Cycl. Agroecosyst. 2015, 102, 137–148. [Google Scholar] [CrossRef]
- Mudhara, M.; Hilderbrand, P.E.; Nair, P.K.R. Potential for adoption of sesbania sesban improved fallows in Zimbabwe: A linear programming-based case study of small-scale farmers. Agrofor. Syst. 2003, 59, 307–315. [Google Scholar] [CrossRef]
- Chang, S.C.; Tsai, C.-H. The adoption of new technology by the farmers in Taiwan. Appl. Econ. 2015, 47, 3817–3824. [Google Scholar] [CrossRef]
- Chianu, J.N.; Chianu, J.N.; Mairura, F. Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron. Sustain. Dev. 2012, 32, 545–566. [Google Scholar] [CrossRef]
- Alene, A.D.; Manyong, V.; Omanya, G.; Mignouna, H.; Bokanga, M.; Odhiambo, G. Smallholder market participation under transactions costs: Maize supply and fertilizer demand in Kenya. Food Policy 2008, 33, 318–328. [Google Scholar] [CrossRef]
- Ciceri, D.; Manning, D.A.; Allanore, A. Historical and technical developments of potassium resources. Sci. Total Environ. 2015, 502, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, M.; Ariga, J.; Jayne, T.S. Modeling the effects of input market reforms on fertiliser demand and maize production: A case study from Kenya. J. Agric. Econ. 2016, 67, 420–447. [Google Scholar] [CrossRef]
- Asfaw, A.; Admassie, A. The role of education on the adoption of chemical fertiliser under different socioeconomic environments in Ethiopia. Agric. Econ. 2004, 30, 215–228. [Google Scholar] [CrossRef]
- Chianu, J.; Tsujii, H. Determinants of farmers’ decision to adopt or not adopt inorganic fertilizer in the savannas of northern Nigeria. Nutr. Cycl. Agroecosyst. 2005, 70, 293–301. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Berger, T.; Aune, J.B. Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach. Ecol. Econ. 2007, 64, 387–401. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.; Jia, X.; Hu, R.; Xiang, C. Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Moreau, P.; Ruiz, L.; Vertes, F.; Baratte, C.; Delaby, L.; Faverdin, P.; Gascuel-Odoux, C.; Piquemal, B.; Ramat, E.; Salmon-Monviola, J.; et al. CASIMOD’N: An agro-hydrological distributed model of catchment-scale nitrogen dynamics integrating farming system decisions. Agric. Syst. 2013, 118, 41–51. [Google Scholar] [CrossRef]
- Van Rees, H.; McClelland, T.; Hochman, Z.; Carberry, P.; Hunt, J.; Huth, N.; Holzworth, D. Leading farmers in South East Australia have closed the exploitable wheat yield gap: Prospects for further improvement. Field Crops Res. 2014, 164, 1–11. [Google Scholar] [CrossRef]
- Sirrine, D.; Shennan, C.; Snapp, S.; Kanyama-Phiri, G.; Kamanga, B.; Sirrine, J.R. Improving recommendations resulting from on-farm research: Agroforestry, risk, profitability and vulnerability in southern Malawi. Int. J. Agric. Sustain. 2010, 8, 290–304. [Google Scholar] [CrossRef]
- Roxburgh, C.W.; Rodriguez, D. Ex-ante analysis of opportunities for the sustainable intensification of maize production in Mozambique. Agric. Syst. 2016, 142, 9–22. [Google Scholar] [CrossRef]
- Oduol, J.B.A.; Tsuji, M. Snrallholder Farms in Embu District, Kenya. J. Fac. Agric. Kyushu Univ. 2005, 50, 727–742. [Google Scholar]
- Dalton, T.J.; Lilja, N.K.; Johnson, N.; Howeler, R. Farmer participatory research and soil conservation in Southeast Asian cassava systems. World Dev. 2011, 39, 2176–2186. [Google Scholar] [CrossRef]
- Nhamo, N.; Rodenburg, J.; Zenna, N.; Makombe, G.; Luzi-Kihupi, A. Narrowing the rice yield gap in East and Southern Africa: Using and adapting existing technologies. Agric. Syst. 2014, 131, 45–55. [Google Scholar] [CrossRef]
- Haneklaus, S.; Hagel, I.; Paulsen, H.M.; Schnug, E. Objectives of plant nutrition research in organic farming. Landbauforsch. Volkenrode 2002, 52, 61–68. [Google Scholar]
- Akinnifesi, F.; Chirwa, P.; Ajayi, O.; Sileshi, G.; Matakala, P.; Kwesiga, F.; Harawa, H.; Makumba, W. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric. J. 2008, 3, 58–75. [Google Scholar]
- Chen, S.E.; Bhagowalia, P.; Shively, G. Input choices in agriculture: Is there a gender bias? World Dev. 2011, 39, 561–568. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Berentsen, P.; van Ittersum, M.; Lansink, A.O. A method to select alternative agricultural activities for future-oriented land use studies. Eur. J. Agron. 2012, 40, 75–85. [Google Scholar] [CrossRef]
- Russo, C.; Cappelletti, G.M.; Nicoletti, G.M.; Di Noia, A.E.; Michalopoulos, G. Comparison of european olive production systems. Sustainability 2016, 8, 825. [Google Scholar] [CrossRef]
- Khumairoh, U.; Groot, J.C.J.; Lantinga, E.A. Complex agro-ecosystems for food security in a changing climate. Ecol. Evol. 2012, 2, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Rerkasem, B. Transforming subsistence cropping in Asia. Plant Prod. Sci. 2005, 8, 275–287. [Google Scholar] [CrossRef]
Fertilizer and Plant Nutrients | Precision Agriculture | Innovation Adoption | |
---|---|---|---|
Search keywords | #1: TS=((fertilizer) or (fertilizer) or (“Plant nutrient”) or (plant + nutrient) or (“Plant nutrition”) or (plant + nutrition)) | #2: TS=(“precision agriculture” or “precision farming”) | Within #1 and #2: TS=(((Innovation) AND (Adoption OR Diffusion OR Transfer OR acceptance) or ((Eco-Innovation) AND (Adoption OR Diffusion OR Transfer OR acceptance))) |
Number of results | 58,650 | 2389 | 148 |
Connection to the theoretical framework | Basic research setting to get information about the fertilizer and plant nutrient sector | Addition to the basic research setting, because many publications are not specifically tailored to the word fertilizer or plant nutrient | Combination of the basic research setting and the extended TAM in order to come to more general conclusions |
Fertilizer and Plant Nutrients | Precision Agriculture | Innovation Adoption | |
---|---|---|---|
Range of pub. years | 1946–2017 | 1994–2016 | 1993–2017 |
Avg. pub. per year (1994–2016) | 2110 | 100 | 5.3 |
Avg. linear increase of pub. per year (1994–2016) | 5.8% | 9.6% | 10.3% |
Top-3 source titles | Commun Soil Sci Plant Anal (3.2%) Agron J (2.8%) Plant Soil (2.4%) | Comput Electron Agric (10%) Precis Agric (5.8%) Transac ASAE (3.7%) | Agric Sys (7%) Precis Agric (7%) J Agric Econ (5%) |
Innovation Found in the Literature | Number of Publications | Innovation Type | |
---|---|---|---|
Disruptive | Continuous | ||
Conserve farming | 11 | Other type | |
Diagnose tools for nutrient status | 10 | Product (service) | |
Fertigation | 6 | Product (good) | |
Fertilizers made from secondary raw materials | 3 | Product (good) | |
Intercropping with (leguminous) crops | 13 | Process (technological) | |
Knowledge training | 6 | Product (service) | |
Nanotechnology | 1 | Other type | |
New cultivation technologies | 28 | Process (technological) | |
Nutrient management technologies | 13 | Process (technological) | |
Precision farming | 17 | Other type | |
Stabilized nutrients | 14 | Product (good) | |
Sustainable intensification | 5 | Process (technological) |
Theoretical Approach | Keyword |
---|---|
Drivers: External precursors |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Drivers: Factors suggested by other theories |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Drivers: Contextual factors |
|
| |
| |
| |
|
Drivers | Disruptive Process Innovations |
---|---|
Involvement in external groups or co-operations | 6 |
Information | 7 |
Access to credit | 8 |
Market access | 7 |
Gender | 8 |
Age | 9 |
Education | 10 |
Farm size | 10 |
Land ownership | 5 |
Drivers | Disruptive Innovations Other Type |
---|---|
Quality of support | 14 |
Information | 13 |
Expectation | 7 |
Task-technology fit | 14 |
Education | 10 |
Farm size | 11 |
Drivers | Continuous Process Innovations |
---|---|
Involvement in external groups or co-operations | 7 |
Quality of support | 7 |
Information | 10 |
Access to credit | 7 |
Market access | 9 |
Farm size | 7 |
Drivers | Continuous Product Innovations (Goods) |
---|---|
Quality of support | 4 |
Information | 4 |
Access to credit | 4 |
Market access | 4 |
Education | 5 |
Drivers | Continuous Product Innovations (Service) |
---|---|
Involvement in external groups or co-operations | 3 |
Observability | 4 |
Quality of support | 3 |
Information | 4 |
Gender | 3 |
Age | 3 |
Farm size | 3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasler, K.; Olfs, H.-W.; Omta, O.; Bröring, S. Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review. Sustainability 2017, 9, 2216. https://doi.org/10.3390/su9122216
Hasler K, Olfs H-W, Omta O, Bröring S. Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review. Sustainability. 2017; 9(12):2216. https://doi.org/10.3390/su9122216
Chicago/Turabian StyleHasler, Kathrin, Hans-Werner Olfs, Onno Omta, and Stefanie Bröring. 2017. "Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review" Sustainability 9, no. 12: 2216. https://doi.org/10.3390/su9122216
APA StyleHasler, K., Olfs, H.-W., Omta, O., & Bröring, S. (2017). Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review. Sustainability, 9(12), 2216. https://doi.org/10.3390/su9122216