The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize
Abstract
:1. Introduction
2. Materials and Methods
3. Life Cycle Inventory
3.1. Inputs
3.2. Emissions
- Leaching of soluble phosphate to groundwater
- Run-off of soluble phosphate to surface water
- Erosion of particles containing phosphorous to surface water.
- Leaching of heavy metals to groundwater
- Emissions of heavy metals to surface waters due to the erosion of soil particles
- Emissions of heavy metals to agricultural soil
4. Results
5. Discussion
5.1. Comparison with Previous Studies
5.2. Comparison with Other Countries
5.3. Potential for South Africa
5.4. Assumptions, Uncertainties and Data Quality
5.5. Potential Barriers to Implementation
5.6. The Future of South African Irrigation
5.7. Alternative Means of Reducing the Environmental Impacts of Maize Production
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO. Aquastat: Water Uses. Available online: http://www.fao.org/nr/water/aquastat/water_use/index.stm (accessed on 20 April 2015).
- FAO. Chapter 2: Energy for Agriculture. Available online: http://www.fao.org/docrep/003/X8054E/x8054e05.htm (accessed on 30 April 2017).
- World Bank World Development Indicators. Available online: http://wdi.worldbank.org/table/2.1 (accessed on 30 April 2017).
- United Nations. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- FAO. How to Feed the World in 2050; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2009. [Google Scholar]
- United Nations. World Population Prospects: The 2010 Revision; United Nations, Department of Economic and Social Affairs, Population Devision: New York, NY, USA, 2011; Volume 1: Comprehensive Tables. [Google Scholar]
- Grain SA Report Documents. Available online: http://www.grainsa.co.za/upload/report_files/NOK-Wit-geelmielies---white-and-yellow-maize-per-provinsie.xls (accessed on 13 April 2017).
- GCIS. South Africa Yearbook 2015/16; Government Communication and Information System (GCIS), South Africa: Pretoria, South Africa, 2016.
- GCIS. South African Yearbook 2013/2014; Government Communication and Information System (GCIS), Republic of South Africa: Pretoria, South Africa, 2014.
- Cousins, B. Smallholder irrigation schemes, agrarian reform and accumulation from above and from below’in South Africa. J. Agrar. Chang. 2013, 13, 116–139. [Google Scholar] [CrossRef]
- GCIS. South African Yearbook 2008/09; Government Communication and Information System (GCIS), Republic of South Africa: Pretoria, South Africa, 2009.
- DAFF. Maize Market Value Chain Profile 2014; Department of Agriculture, Forestry and Fisheries (DAFF), Republic of South Africa: Pretoria, South Africa, 2014.
- Frankl, P. Technology Roadmap: Solar Photovoltaic Energy; International Energy Agency (IEA): Paris, France, 2010. [Google Scholar]
- Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 2005, 33, 289–296. [Google Scholar] [CrossRef]
- Van der Hoeven, M. Technology Roadmap Solar Photovoltaic Energy—2014 Edition; International Energy Agency (IEA): Paris, France, 2014. [Google Scholar]
- IEA. Snapshot of Global Photovoltaic Markets 2016; International Energy Agency (IEA): Paris, France, 2017. [Google Scholar]
- Ginley, D.S.; Cahen, D. (Eds.) Fundementals of Materials for Energy and Environmental Sustainability; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Green, M.A. Third Generation Photovoltais; Springer: New York, NY, USA, 2006. [Google Scholar]
- Milichko, V.A.; Shalin, A.S.; Mukhin, I.S.; Kovrov, A.E.; Krasilin, A.A.; Vinogradov, A.V.; Belov, P.A.; Simovski, C.R. Solar photovoltaics: Current state and trends. Phys. Uspekhi 2016, 59, 727–772. [Google Scholar] [CrossRef]
- Grant, T.; Beer, T. Life cycle assessment of greenhouse gas emissions from irrigated maize and their significance in the value chain. Anim. Prod. Sci. 2008, 48, 375–381. [Google Scholar] [CrossRef]
- Renouf, M.A. LCA of Queensland cane sugar-lessons for the application of LCA to cropping systems in Australia. In Proceedings of the 5th Australian Conference on Life Cycle Assessment, 22–24 November 2006; Citeseer: Melbourne, Australia, 2006; pp. 22–24. [Google Scholar]
- Cameco Corporation. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. Available online: https://www.cameco.com/uranium_101/static/pdf/Cameco_-_Corporation_Report_on_GHG_Emissions_nov_2010.pdf (accessed on 21 September 2017).
- Dones, R.; Heck, R.; Hirschberg, S. Greenhouse gas emissions from energy systems, comparison and overview. Encycl. Energy 2004, 3, 77–95. [Google Scholar]
- Turconi, R.; Boldrin, A.; Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 2013, 28, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Mekhilef, S.; Faramarzi, S.Z.; Saidur, R.; Salam, Z. The application of solar technologies for sustainable development of agricultural sector. Renew. Sustain. Energy Rev. 2013, 18, 583–594. [Google Scholar] [CrossRef]
- Meah, K.; Fletcher, S.; Ula, S. Solar photovoltaic water pumping for remote locations. Renew. Sustain. Energy Rev. 2008, 12, 472–487. [Google Scholar] [CrossRef]
- Ahammed, F.; Taufiq, D.A. Applications of solar PV on rural development in Bangladesh. J. Rural Community Dev. 2008, 3, 93–103. [Google Scholar]
- Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. Design development and testing of a solar PV pump based drip system for orchards. Renew. Energy 2003, 28, 385–396. [Google Scholar] [CrossRef]
- Van Vuuren, P.F.J.; Pineo, C.B.; Basson, L. Solar energy in agri-processing. In Proceedings of the Southern African Solar Energy Conference 2016, Tellenbosch, Africa, 31 October–2 November 2016. [Google Scholar]
- Scharfy, D.; Stucki, M.; Eymann, L.; Keller, R.; Wettstein, S.; von Blottnitz, H. Green Technologies for Food Production: The Mitigation Potential in South African Fruit, Maize and Dairy Value Chains. In Proceedings of the Conference of the World Sustainability Forum 2017, Cape Town, South Africa, 28 January 2017. [Google Scholar]
- Wettstein, S.; Scharfy, D.; Berli, C.; von Blottnitz, H.; Stucki, M. South African maize production: Mitigating environmental impacts through solar powered irrigation. In Proceedings of the 10th International Conference on Life Cycle Assessment of Food, Dublin, Ireland, 19–21 October 2016. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO14040:2006; International Organization of Standarization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO14044:2006; International Organization of Standarization: Geneva, Switzerland, 2006. [Google Scholar]
- Grain, S.A. Operational Planning of White Maize Grain Production in the Production Year 2011/2012 in Eastern Highveld, South Africa; Grain S.A.: Lynnwood Ridge, South Africa, 2014. [Google Scholar]
- Grain, S.A. Operational Planning of White Maize Grain Production in the Production Year 2011/2012 in Northwest, South Africa; Grain S.A.: Lynnwood Ridge, South Africa, 2014. [Google Scholar]
- Grain, S.A. Operational Planning of White Maize Grain Production in the Production Year 2011/2012 in Central and Northern Free State, South Africa; Grain S.A.: Lynnwood Ridge, South Africa, 2014. [Google Scholar]
- Grain, S.A. Maize production in South Africa from 2006–2013; Grain S.A.: Lynnwood Ridge, South Africa, 2014. [Google Scholar]
- Rechtus, S.; GWK Beperk, Kimberly, South Africa. Personal communication, 2016.
- Coetzee, J.; South African Breweries, Johannesburg, South Africa. Personal communication, 2016.
- DistanceFromTo. Distance Between Cities Places on Map. Available online: http://www.distancefromto.net (accessed on 15 April 2015).
- SeaRates.com. Available online: http://www.searates.com/de/reference/portdistance (accessed on 15 April 2015).
- Ecoinvent Centre. Ecoinvent Data v3.3; Swiss Centre for Life Cycle Inventories: Zürich, Switzerland, 2016. [Google Scholar]
- IPCC. Climate Change 2013: The physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N. Implementation of life cycle impact assessment methods. Final Rep. Ecoinvent V2 2010, 2. [Google Scholar]
- Rabl, A.; Spadaro, J.V. The RiskPoll Software. Available online: http://www.arirabl.com/software (accessed on 21 September 2017).
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Available online: http://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf (accessed on 21 September 2017).
- Frischknecht, R.; Büsser Knöpfel, S. Swiss Eco-Factors 2013 According to the Ecological Scarcity Method. Available online: https://www.bafu.admin.ch/bafu/en/home/topics/economy-consumption/economy-and-consumption--publications/publications-economy-and-consumption/eco-factors-2015-scarcity.html (accessed on 21 September 2017).
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.-P. Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator (14 pp). Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Posch, M.; Seppälä, J.; Hettelingh, J.-P.; Johansson, M.; Margni, M.; Jolliet, O. The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. Int. J. Life Cycle Assess. 2008, 13, 477–486. [Google Scholar] [CrossRef]
- Pfister, S.; Baumann, J. Monthly characterization factors for water consumption and application to temporally explicit cereals inventory. In Proceedings of the LCA Food 2012: VII International Conference on Life Assessment in the Agri-Food Sector, Bari, Italy, 22–24 September 2010. [Google Scholar]
- Coetzee, J.; South African Breweries, Johannesburg, South Africa. Personal communication, 2015.
- Viljoen, N. 10th Annual State of Logistics Survey for South Africa 2013; The Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 2014. [Google Scholar]
- Internationl Energy Agency Coal Research Ltd.; FuelConsult GmbH; Glówny Instytut Górnictwa; Tallinn University of Technology, S.P. E.V. E.O. P.S. Review of Worldwide Coal to Liquids. R, D&D Activities and the Need for Futher Initiatives within Europe. Available online: http://www.iea-coal.org.uk/documents/82184/7171/Review-of-worldwide-coal-to-liquids-R,-D&D-activities-and-the-need-for-further-initiatives-within-Europe (accessed on 21 September 2017).
- Dick, J. Simple Life Cycle Assessment of Sasol Synfuels Secunda (Unpublished); University of Cape Town: Cape Town, South Africa, 2012. [Google Scholar]
- Marais, L.; Sentor 360, Klerksdorp, South Africa. Personal communication, 2015.
- Hall, W.; Maize producer, Heidelberg, South Africa. Personal communication, 2015.
- Du Plessis, J. Maize Production; Department of Agriculture, Forestry and Fisheries in cooperation with ARC-Grain Crops Institute: Pretoria, South Africa, 2003. [Google Scholar]
- Vorster, L.; AFGRI, Centurion, South Africa. Personal communication, 2015.
- JRC-EC PV Potential Estimation Utility. Available online: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?lang=en&map=africa (accessed on 25 April 2015).
- Frischknecht, R.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 3rd ed.; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016.
- Jungbluth, N.; Stucki, M.; Flury, K.; Frischknecht, R.; Büsser, S. Life Cycle Inventories of Photovoltaics; ESU-Services Ltd.: Uster, Switzerland, 2012. [Google Scholar]
- Meier, M.S.; Schader, C.; Berner, A.; Gattinger, A. Modelling N2O emissions from organic fertilisers for LCA inventories. In Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector, Saint-Malo, France, 1–4 October 2012. [Google Scholar]
- Nemecek, T.; Kägi, T. Life Cycle Inventories of Agriculture Production Systems; ART: Zürich, Switzerland; Dübendorf, Switzerland, 2007. [Google Scholar]
- Asman, W.A.H. Ammonia Emission in Europe: Updated Emission and Emission Variations; National Institute of Public Health and Environmental Protection: Bilthoven, Utrecht, The Netherlands, 1992. [Google Scholar]
- Meier, M.S.; Jungbluth, N.; Stoessel, F.; Schader, C.; Stolze, M. Higher accuracy in N modeling makes a difference. In Proceedings of the 9th International Conference Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA, 8–10 October 2014; pp. 8–10. [Google Scholar]
- Prasuhn, V.; Grünig, K. Evaluation der Ökomassnahmen-Phosphorbelastung der Oberflächengewässer durch Bodenerosion; Eidgenössische Forschungsanstalt für Agrarökologie und Landbau: Zürich-Reckenholz, Swizerland, 2001. [Google Scholar]
- Prasuhn, V. Erfassung der PO4-Austräge für die Ökobilanzierung. SALCA-Phosphor; Agroscope FAL Reckenholz: Zurich, Switzerland, 2006. [Google Scholar]
- Kooman, G.; Critchley, W.R.S. GIS-Assisted Modelling of Soil Erosion in a South African Catchment: Evaluating the USLE and SLEMSA Approach. In Water Resources Planning, Development and Management; Breetzke, G.D., Ed.; InTech: Canterbury, New Zealand, 2013; ISBN 978-953-51-1092-7. [Google Scholar] [Green Version]
- Le Roux, J.J.; Morgenthal, T.L.; Malherbe, J.; Pretorius, D.J.; Sumner, P.D. Water erosion prediction at a national scale for South Africa. Water SA 2008, 34, 305–314. [Google Scholar]
- UWC Erosion. Available online: http://www.botany.uwc.ac.za/envfacts/facts/erosion.htm (accessed on 28 April 2015).
- Wilke, B.; Schaub, D. Phosphatanreicherung bei Bodenerosion. Mitt. Dtsch. Bodenkndul. Gesellsch 1996, 79, 435–438. [Google Scholar]
- Kühnholz, O. Schwermetalle in der Ökobilanz von landwirtschaftlichen Produktionssystemen; Agroscope FAL Reckenholz: Zürich-Reckenholz, Switzerland, 2001. [Google Scholar]
- Freiermuth, R. Modell zur Berechnung der Schwermetallflüsse in der landwirtschaftlichen Ökobilanz. Available online: https://www.agroscope.admin.ch/dam/agroscope/de/dokumente/themen/umwelt-ressourcen/produktionssysteme/salca-schwermetall.pdf.download.pdf/SALCA-Schwermetall.pdf (accessed on 21 September 2017).
- Wolfensberger, U.; Dinkel, F.; Gaillard, G.; Hirs, B.; Lips, A.; Nentwig, W.; Waldeck, B. Beurteilung Nachwachsender Rohstoffe in der Schweiz in den Jahren 1993–1996. Vergleichende Betrachtung von Produkten aus Ausgewählten NWR und Entsprechenden Konventionellen Produkten bezüglich Umweltwirkungen und Wirtschaftlichkeit; FAT: Bern, Switzerland; Tänikon, Switzerland, 1997. [Google Scholar]
- Keller, T.; Desaules, A. NABO: Böden der Schweiz: Schadstoffgehalte und Orientierungswerte (1990–1996); Bundesamt für Umwelt, Wald und Landschaft: Bern, Switzerland, 2001. [Google Scholar]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed]
- Pfister, S.; Baumann, J. Monthly characterization factors for water consumption and application to temporally explicit cereals inventory. In Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2012), Saint-Malo France, 2–4 October 2012; pp. 1–4. [Google Scholar]
- Dones, R.; Heck, T.; Bauer, C.; Hirschberg, S.; Bickel, P.; Preiss, P. Externalities of Energy: Extension of Accounting Framework and Policy Applications New Energy Technologies; Paul Scherrer Institute: Villingen, Switzerland, 2005. [Google Scholar]
- Gagnon, L.; Belanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Hondo, H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 2005, 30, 2042–2056. [Google Scholar] [CrossRef]
- Spandero, J.V.; Langlois, L.; Hamilton, B. Greenhouse gas emissions of electricity generation chains—Assessing the difference. IAEA Bull. 2000, 42, 2. [Google Scholar]
- Weisser, D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 2007, 32, 1543–1559. [Google Scholar] [CrossRef]
- Bhat, I.K.; Prakash, R. LCA of renewable energy for electricity generation systems—A review. Renew. Sustain. Energy Rev. 2009, 1067–1073. [Google Scholar] [CrossRef]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Peng, J.; Lu, L.; Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Sherwani, A.F.; Usmani, J.A. Varun Life cycle assessment of solar PV based electricity generation systems: A review. Renew. Sustain. Energy Rev. 2010, 14, 540–544. [Google Scholar] [CrossRef]
- Scharfy, D.; Boccali, N.; Stucki, M. Clean technologies in agriculture—How to prioritise measures? Sustainability 2017, 9, 1303. [Google Scholar] [CrossRef]
- DAFF. Trends in the Agricultural Sector 2016; Department of Agriculture, Forestry and Fisheries (DAFF), Republic of South Africa: Pretoria, South Africa, 2017.
- DEA-RSA. GHG Inventory for South Africa; Department of Environmental Affairs (DEA), Republic of South Africa: Pretoria, South Africa, 2014.
- Hoffmann, T.; Todd, S.; Ntshona, Z.; Turner, S. Land Degradation in South Africa; University of Cape Town: Cape Town, South Africa, 2014. [Google Scholar]
- Pegels, A. Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 2010, 38, 4945–4954. [Google Scholar] [CrossRef]
- National Planning Commision. National Development Plan 2030: Our Future-Make It Work; National Planning Commision: Pretoria, South Africa, 2012.
- DE-RSA. Perspectives on the REIPPPP and the Investment and Business Opportunities It Offers. Available online: http://www.energy.gov.za/files/WOESA/2015/northwest/Perspectives-on-the-REIPPPP-and-the-investment-and-business-opportunities-it-offers.pdf (accessed on 13 June 2017).
- Betz, S.; Caneva, S.; Weiss, I.; Rowley, P. Photovoltaic energy competitiveness and risk assessment for the South African residential sector: PV energy competitiveness and risk assessment in South Africa. Prog. Photovolt. Res. Appl. 2016, 24, 1577–1591. [Google Scholar] [CrossRef] [Green Version]
- Biscchof-Niemz, T.; Calitz, J.; Wright, J.G. Benefits of solar PV reserve provision in South Africa. In Proceedings of the 4th Southern African Solar Energy Conference, Stellenbosch, South Africa, 31 October–2 November 2016. [Google Scholar]
- Walwyn, D.R.; Brent, A.C. Renewable energy gathers steam in South Africa. Renew. Sustain. Energy Rev. 2015, 41, 390–401. [Google Scholar] [CrossRef]
- Sager, M. Climate Change and Energy. Renewable Energy Vision 2030- South Africa; WWF-SA: Cape Town, South Africa, 2014. [Google Scholar]
- Bischof-Niemz, T. Cost of New Power Generators in South Africa; Comparative Analysis Based on Recent IPP Announcements 14.102016; CSIR: Pretoria, South Africa, 2016. [Google Scholar]
- WWF Agriculture: The Greatest User of Water. Available online: http://wwf.panda.org/what_we_do/footprint/agriculture/impacts/water_use/ (accessed on 21 April 2015).
- Davies, B.; Day, J. Vanishing Waters; University of Cape Town Press: Cape Town, South Africa, 1998. [Google Scholar]
- Stats SA. National Accounts: Water Management Areas in South Africa; Stats SA: Pretoria, South Africa, 2010.
- GCIS. South African Yearbook 2011/12: Agriculture, Forestry and Fisheries; Government Communication and Information System (GCIS), Republic of South Africa: Pretoria, South Africa, 2012.
- Van Averbeke, W.; Denison, J.; Mnkeni, P. Smallholder irrigation schemes in South Africa: A review of knowledge generated by the Water Research Commission. Water SA 2011, 37. [Google Scholar] [CrossRef]
- Van Rensburg, L.; De Clercq, W.; Barnard, J.; Du Preez, C. Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. Water SA 2011, 37. [Google Scholar] [CrossRef]
- Fowler, R.; Rockström, J. Conservation tillage for sustainable agriculture: An agrarian revolution gathers momentum in Africa. Soil Tillage Res. 2001, 61, 93–108. [Google Scholar] [CrossRef]
- Erenstein, O.; Sayre, K.; Wall, P.; Hellin, J.; Dixon, J. Conservation Agriculture in Maize- and Wheat-Based Systems in the (Sub)tropics: Lessons from Adaptation Initiatives in South Asia, Mexico, and Southern Africa. J. Sustain. Agric. 2012, 36, 180–206. [Google Scholar] [CrossRef]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.; Temesgen, M.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Tillage Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127. [Google Scholar] [CrossRef]
- Smith, H.; Grain SA, Pretoria, South Africa. Personal communication, 2017.
- Strauss, J.; Western Cape Department of Agriculture, Elsenburg, South Africa. Personal communication, 2017.
- Derpsch, R.; Friedrich, T. Development and current status of no-till adoption in the world. In Proceedings of the CD 18th Triennial Conference of the International Soil Tillage Research Organisation (ISTRO), Izmir, Turkey, 15–19 June 2009. [Google Scholar]
- Kotze, I.; Rose, M. Farming Facts and Futures: Reconnecting South Africa’s Food Systems to Its Ecosystems; WWF-SA: Cape Town, South Africa, 2015. [Google Scholar]
- Singels, A.; Smith, M.T. Provision of irrigation scheduling advice to small-scale sugercane growers using a web based crop model and cellular technology: A South African case study. Irrig. Drain. 2006, 55, 363–372. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Price, E.W.; King, D.M. Environmental benefits of wireless sensor-based irrigation networks: Case-study projections and potential adoption rates. HortTechnology 2013, 23, 783–793. [Google Scholar]
- Postel, S.; Polak, P.; Gonzales, F.; Keller, J. Drip Irrigation for Small Farmers: A New Initiative to Alleviate Hunger and Poverty. Water Int. 2001, 26, 3–13. [Google Scholar] [CrossRef]
- FAO. Chapter 6. Drip Irrigation. Food and Agriculture Organization of the United Nations—Document Repository. Available online: http://www.fao.org/docrep/s8684e/s8684e07.htm#6.2 (accessed on 30 June 2015).
- Hebeisen, T.; Ballmer, T. Potential der Tröpfchenbewässerung bei Kartoffeln. Available online: http://www.agroscope.admin.ch/veranstaltungen/00610/index.html?lang=de&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1acy4Zn4Z2qZpnO2Yuq2Z6gpJCFeXx2gWym162epYbg2c_JjKbNoKSn6A%20 (accessed on 30 June 2015).
- König, A. Multi Criteria Evaluation of Mitigation Solutions in Agriculture. Master-Tutorial: Applying Life Cycle Assessment for the Mitigation of Environmental Impacts of South African Agri-Food Products. Master’s Thesis, Zurich University of Applied Sciences, Wädenswil, Switzerland, 2015. [Google Scholar]
Indicator | Method | Description |
---|---|---|
Climate change | IPCC [43], GWP 100a | The impact indicator climate change accounts for all greenhouse gas (GHG) emissions. The potential climatic effect of each greenhouse gas is compared with the climate impact of CO2 and expressed in CO2-equivalents. |
Non-renewable energy (fossil and nuclear) | Cumulative energy demand [44] | Cumulative energy demand (CED) is a measure of energy use throughout the life cycle of a product, including both direct and indirect (grey) consumption of energy [44]. In this study, only fossil and nuclear energy resources were considered. |
Freshwater and marine eutrophication | ILCD [45] | Aquatic eutrophication is the enrichment of nutrients in the aquatic environment. Because growth of phytoplankton depends on the availability of P and N, emissions of P or N can be converted into biomass [46]. Long-term emissions are excluded from the life cycle impact assessment. |
Land use | Ecological Scarcity 2013 | For the impact assessment of land use, biodiversity of different land types is considered. Specific eco-factors are available for 14 different biomes [47]. |
Particulate matter | ILCD [45] | Quantification of the impact of premature death or disability that particulates/respiratory inorganics have on the population, in comparison to PM2.5. It includes the assessment of primary (PM10 and PM2.5) and secondary PM (including creation of secondary PM due to SOx, NOx and NH3 emissions) and CO [45]. |
Acidification | ILCD [48,49] | Accumulated Exceedance (AE), characterising the change in critical load exceedance of the sensitive area in terrestrial and main freshwater ecosystems, to which acidifying substances are deposited [48,49]. |
Water footprint | Water scarcity [50] | Water scarcity is based on the ratio of withdrawn to available water and is expressed as m3 deprived to m3 consumed water. The indicator is applied to the consumed water volume and assesses consumptive water use only. |
Unit | Maize, Rainfed | Maize, Irrigated | |
---|---|---|---|
Yield | t ha−1 | 3.77 † | 8.13 † |
Seeds | kg ha−1 | 10.0 | 23.1 |
Fertilisers | |||
Lime | t ha−1 | 0.9 | 1.0 |
NPK | kg ha−1 | 85 | 282 |
Manure | t ha−1 | 2.5 | 2.5 |
Pesticides | |||
Herbicides | kg ha−1 | 0.5 | 0.0001 |
Insecticides/fungicides | L ha−1 | 7.7 | 2.2 |
Irrigation | |||
Water | m3 ha−1 | 0 | 7000 |
Electricity | kWh ha−1 | 0 | 1900 |
Diesel consumption | L ha−1 | 71.9 | 79.7 |
Country of Production | Yield (kg ha−1) | GWP (kg CO2-eq. kg−1) |
---|---|---|
Argentina | 7400 | 1.24 |
South Africa | 8134 | 0.80 |
Canada | 8900 | 0.57 |
Switzerland | 9279 | 0.51 |
US | 9315 | 0.54 |
Irrigated production area 2015/2016 (1000 ha) | 240.64 |
Irrigated maize yield (kg ha−1 a−1) | 8134 |
GWP of maize irrigated using grid electricity (kg CO2-eq. kg−1) | 0.80 |
GHG emissions of South African irrigated maize production using grid electricity (t CO2-eq. a−1) | 1,575,364 |
Mitigation potential of PV irrigation | 34% |
Total mitigation potential for South Africa (t CO2-eq.a−1) | 535,642 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wettstein, S.; Muir, K.; Scharfy, D.; Stucki, M. The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize. Sustainability 2017, 9, 1772. https://doi.org/10.3390/su9101772
Wettstein S, Muir K, Scharfy D, Stucki M. The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize. Sustainability. 2017; 9(10):1772. https://doi.org/10.3390/su9101772
Chicago/Turabian StyleWettstein, Sarah, Karen Muir, Deborah Scharfy, and Matthias Stucki. 2017. "The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize" Sustainability 9, no. 10: 1772. https://doi.org/10.3390/su9101772
APA StyleWettstein, S., Muir, K., Scharfy, D., & Stucki, M. (2017). The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize. Sustainability, 9(10), 1772. https://doi.org/10.3390/su9101772