Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas
Abstract
:1. Introduction
2. The Importance of Soils for Humans
3. Land Uses and Management Systems in Argentine Pampas
4. The Present Situation of Farming Systems: Impacts and Pressures
5. Soil Fauna in the Pampas Agroecosystems: The Current State of Knowledge
6. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Wall, D.H.; Six, J. Give soils their due. Science 2015, 347, 695. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.R.; Winiwarter, V. Breaking the sod: Humankind, history, and soil. Science 2004, 304, 1627–1629. [Google Scholar] [CrossRef] [PubMed]
- Minami, K. Soil and humanity: Culture, civilization, livelihood and health. Soil Sci. Plant. Nutr. 2009, 55, 603–615. [Google Scholar] [CrossRef]
- Chang-Qun, D.; Xue-Chun, G.; Wang, J.; Chien, P.K. Relocation of civilization centers in ancient China: Environmental factors. Ambio 1998, 27, 572–575. [Google Scholar]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Agriculture at a Crossroads: International Assessment of Agricultural Knowledge, Science and Technology for Development. Available online: http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf (accessed on 10 March 2016).
- Foley, J.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T.; Pimentel, D.; Paoletti, M. Is there a need for a more sustainable agriculture? Crit. Rev. Plant. Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Foley, J.; Ramankutty, N.; Brauman, K.; Cassidy, E.; Gerber, J.; Johnston, M.; Mueller, N.; O’Connell, C.; Ray, D.K.; West, P.W.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. 2009. Available online: https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2009/4294967719.pdf (accessed on 10 March 2016).
- World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Available online: https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf (accessed on 10 March 2016).
- Tomlinson, I. Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. J. Rural Stud. 2013, 29, 81–90. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J. Separación o integración para la conservación de biodiversidad: La ideología detrás del debate land-sharing frente a land-sparing. Ecosistemas 2012, 21, 1–2. (In Spanish) [Google Scholar]
- FAO. The State of Food Insecurity in the World 2009: Economic Crises—Impacts and Lessons Learned. Available online: http://www.fao.org/docrep/012/i0876e/i0876e00.htm (accessed on 10 April 2016).
- Agriculture at a Crossroads, Latin America and the Caribbean (LAC) Report. Available online: http://www.unep.org/dewa/agassessment/reports/subglobal/Agriculture_at_a_Crossroads_Volume_III_Latin_America_and_the_Caribbean_Subglobal_Report.pdf (accessed on 10 March 2016).
- Chappell, M.J.; LaValle, L.A. Food security and biodiversity: Can we have both? An agroecological analysis. Agric. Hum. Values 2011, 28, 3–26. [Google Scholar] [CrossRef]
- Feeding the World—A Look at Biotechnology & World Hunger (2). Available online: http://www.pewtrusts.org/en/research-and-analysis/reports/2004/03/03/feeding-the-world-a-look-at-biotechnology-and-world-hunger(2) (accessed on 10 March 2016).
- FAO. The State of Food and Agriculture 2010–2011. Available online: http://www.fao.org/docrep/013/i2050e/i2050e.pdf (accessed on 10 March 2016).
- Eswaran, H.; Lal, R.; Reich, P.F. Land degradation: An overview. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054028 (accessed on 10 March 2016).
- FAO. Nothing Dirty here: FAO Kicks off International Year of Soils, 2015. Available online: http://www.fao.org/news/story/en/item/270812/icode/ (accessed on 10 March 2016).
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.T.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: http://faostat.fao.org (accessed on 10 December 2015).
- Viglizzo, E.; Lertora, F.; Pordomingo, A.; Bernardos, J.; Roberto, Z.; del valle, H. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric. Ecosyst. Environ. 2001, 83, 65–81. [Google Scholar] [CrossRef]
- Manuel-Navarrete, D.; Gallopin, G.C.; Blanco, M.; Díaz-Zorita, M.; Ferraro, D.; Herzer, H.; Laterra, P.; Murmis, M.; Podesta, G.; Rabinovich, J.; et al. Multi-causal and integrated assessment of sustainability: The case of agriculturization in the Argentine Pampas. Environ. Dev. Sustain. 2009, 11, 621–638. [Google Scholar] [CrossRef]
- Solbrig, O.T.; Viglizzo, E. Sustainable Farming in the Argentine Pampas: History, Society, Economy, and Ecology; DRCLAS Working Paper No 99/00-1; Harvard University Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Burkart, R.; Bárbaro, N.; Sánchez, R.; Gómez, D. Ecorregiones de Argentina; Editorial APN Pub: Buenos Aires, Argentina, 1999. (In Spanish) [Google Scholar]
- Solbrig, O.T. Towards a Sustainable Pampa Agriculture: Past Performance and Prospective Analysis; DRCLAS Working Paper No 96/97-6; Harvard University Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Trigo, E.J.; Cap, E.J. The impact of the introduction of transgenic crops in Argentinean agriculture. AgBioForum 2004, 6, 87–94. [Google Scholar]
- Qaim, M.; Traxler, G. Roundup ready soybeans in Argentina: Farm level and aggregate welfare effects. Agric. Econ. 2005, 32, 73–86. [Google Scholar] [CrossRef]
- Cáceres, D.M. Accumulation by dispossession and socio-environmental conflicts caused by the expansion of agribusiness in Argentina. J. Agrar. Chang. 2014, 15, 116–147. [Google Scholar] [CrossRef]
- El Nuevo Escenario de la Ganadería en Argentina. Available online: http://www.bcr.com.ar/Secretara%20de%20Cultura/Revista%20Institucional/2011/Agosto/GANADERIA.pdf (accessed on 10 March 2016). (In Spanish)
- SENASA. Establecimientos de Engorde a Corral. Available online: http://www.senasa.gov.ar/sites/default/files/ARBOL_SENASA/INFORMACION/INFORMES%20Y%20ESTADISTICAS/Informes%20y%20estadisticas%20Animal/BOVINOS/BOVINOS/INFORMES%20ESTADISTICOS/Corral%20junio_2013.pdf (accessed on 10 March 2016). (In Spanish)
- Ten Years of Genetically Modified Crops in Argentine Agriculture. Available online: http://argenbio.org/biblioteca/Ten_Years_of_GM_Crops_in_Argentine_Agriculture_02_01_07.pdf (accessed on 10 March 2016).
- FAO. What is Conservation Agriculture? Available online: http://www.fao.org/ag/ca/1a.html (accessed on 15 September 2015).
- CESO—Centro de Estudios Económicos y Sociales Scalabrini Ortiz. Costos y Rentabilidad del Cultivo de Soja en la Argentina. Available online: http://www.ceso.com.ar/ (accessed on 10 March 2016). (In Spanish)
- Wingeyer, A.B.; Amado, T.J.; Pérez-Bidegain, M.; Studdert, G.A.; Varela, C.H.; Garcia, F.; Karlen, D.L. Soil quality impacts of current South American agricultural practices. Sustainability 2015, 7, 2213–2242. [Google Scholar] [CrossRef]
- SAGPyA. Censo Nacional Agropecuario 2002, National Institute of Statistics and Census of Argentina. Available online: http://www.indec.mecon.gov.ar/agropecuario/cna.asp (accessed on 10 October 2015). (In Spanish)
- Chappell, M.J.; Wittman, H.; Bacon, C.; Ferguson, B.; Barrios, L.; Barrios, R.; Jaffee, D.; Lima, J.; Méndez, E.; Morales, H.; et al. Food sovereignty: An alternative paradigm for poverty reduction and biodiversity conservation in Latin America. F1000Research 2013, 2, 235. [Google Scholar] [CrossRef] [PubMed]
- Urcola, H.A.; de Sartre, X.A.; Veiga, I.; Elverdin, J.; Albaladejo, C. Land tenancy, soybean, actors and transformations in the Pampas: A district balance. J. Rural Stud. 2015, 39, 32–40. [Google Scholar] [CrossRef]
- Caligaris, G. Concentración y centralización del capital agrario en la región pampeana. El caso de los grandes pooles de siembra. Mundo Agrario. 2015, 16, 31. (In Spanish) [Google Scholar]
- Infocampo. Altos Precios de Alquiler de Campos en Argentina Ecuación Para Campaña 2014/15. Available online: http://infocampo.com.ar/nota/campo/61010/altospreciosdealquilerdecamposenargentinacomplicanecuacionparacampana201415 (accessed on 10 March 2016). (In Spanish)
- Infocampo. Arrendamientos: Afirman que la Caída en los Precios a la Producción. Available online: http://infocampo.com.ar/nota/campo/44379/arrendamientosafirmanquelacaidaenlospreciosbeneficiaraalaproduccion (accessed on 10 March 2016). (In Spanish)
- Arora, P.; Bert, F.; Podestac, G.; Krantz, D.H. Ownership effect in the wild: Influence of landownership on agribusiness goals and decisions in the Argentine Pampas. J. Behav. Exp. Econ. 2015, 58, 162–170. [Google Scholar] [CrossRef]
- Manuel-Navarrete, D.; Gallopín, G.C. Feeding the world sustainably: Knowledge governance and sustainable agriculture in the Argentine Pampas. Environ. Dev. Sustain. 2012, 14, 321–333. [Google Scholar] [CrossRef]
- Diffusion Process in Networks: The Case of Transgenic Soybean in Argentina. Available online: http://www.littec.ungs.edu.ar/pdfingles/BisangGlobellicsEnglish.pdf (accessed on 10 March 2016).
- SIIA. Sistema Integrado de Información Agropecuaria. Available online: http://www.siia.gov.ar/_apps/siia/arbol/total_pciaX.php?respuesta=AG (accessed on 10 March 2016). (In Spanish)
- International Agency for Research on Cancer Volume 112: Some Organophosphate Insecticides and Herbicides. Available online: https://www.iarc.fr/en/media-centre/iarcnews/pdf/MonographVolume112.pdf (accessed on 10 March 2016).
- Buch, A.C.; Brown, G.G.; Niva, C.C.; Sautter, K.D.; Sousa, J.P. Toxicity of three pesticides commonly used in Brazil to Pontoscolex corethrurus (Müller, 1857) and Eisenia andrei (Bouché, 1972). Appl. Soil Ecol. 2013, 69, 32–38. [Google Scholar] [CrossRef]
- Casabé, N.; Piola, L.; Fuchs, J.; Oneto, M.L.; Pamparato, L.; Basack, S.; Giménez, R.; Massaro, R.; Papa, J.C.; Kesten, E. Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J. Soils Sediments 2007, 7, 232–239. [Google Scholar] [CrossRef]
- Correia, F.V.; Moreira, J.C. Effects of glyphosate and 2, 4-D on earthworms (Eisenia. foetida) in laboratory tests. Bull. Environ. Contam. Toxicol. 2010, 85, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Dalby, P.R.; Baker, G.H.; Smith, S.E. Glyphosate, 2, 4-db and dimethoate: Effects on earthworm survival and growth. Soil Biol. Biochem. 1995, 27, 1661–1662. [Google Scholar] [CrossRef]
- Santos, M.J.G.; Morgado, R.; Ferreira, N.G.C.; Soares, A.M.V.M.; Loureiro, S. Evaluation of the joint effect of glyphosate and dimethoate using a small-scale terrestrial ecosystem. Ecotox. Environ. Safe 2011, 74, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.G.; Ferreira, M.F.L.; Cachada, A.; Duarte, A.C.; Sousa, J.P. Pesticide application to agricultural fields: Effects on the reproduction and avoidance behaviour of Folsomia candida and Eisenia andrei. Ecotoxicology 2012, 21, 2113–2122. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, S.; D’Souza, D. Effect of pesticides on the reproductive output of Eisenia fetida. Bull. Environ. Contam. Toxicol. 2007, 79, 529–532. [Google Scholar] [CrossRef] [PubMed]
- García-Torres, T.; Giuffré, L.; Romaniuk, R.; Ríos, R.P.; Pagano, E.A. Exposure assessment to glyphosate of two species of annelids. Bull. Environ. Contam. Toxicol. 2014, 93, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Piola, L.; Fuchs, J.; Oneto, M.L.; Basack, S.; Kesten, E.; Casabé, N. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 2013, 91, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.F.; Wang, Y.J.; Li, C.C.; Sun, R.J.; Yo, Y.C.; Zhou, D.M. Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida). Environ. Pollut. 2013, 180, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Santadino, M.; Coviella, C.; Momo, F. Glyphosate sublethal effects on the population dynamics of the earthworm Eisenia. fetida (Savigny, 1826). Water Air Soil Pollut. 2014, 225, 1–8. [Google Scholar] [CrossRef]
- Domínguez, A.; Brown, G.G.; Sautter, K.D.; Ribas de Oliveira, C.M.; Carvalho de Vasconcelos, E.; Niva, C.C.; Bartz, M.L.C.; Bedano, J.C. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Sci. Rep. 2016, 6, 19731. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Zorita, M.; Duarte, G.; Grove, J.H. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Tillage Res. 2002, 65, 1–18. [Google Scholar] [CrossRef]
- Taboada, M.A.; Micucci, F.G.; Cosentino, D.J.; Lavado, R.S. Comparison of compaction induced by conventional and zero tillage in two soil of the Rolling Pampa of Argentina. Soil Tillage Res. 1998, 49, 57–63. [Google Scholar] [CrossRef]
- Buschiazzo, D.E.; Panigatti, J.L.; Unger, P.W. Tillage effects on soil properties and crop production in the subhumid and semiarid Argentinean Pampas. Soil Tillage Res. 1998, 49, 105–116. [Google Scholar] [CrossRef]
- Domínguez, A.; Bedano, J.C. Earthworm and enchytraeid co-occurrence pattern in organic and conventional farming: consequences for ecosystem engineering. Soil Sci. 2016, 181, 148–156. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Cantú, M.; Becker, A.; Bedano, J.C.; Schiavo, H. Evaluación de la calidad de suelos mediante el uso de indicadores e índices. Ci Suelo 2007, 25, 173–178. (In Spanish) [Google Scholar]
- Cantú, M.; Becker, A.; Bedano, J.C.; Schiavo, H. Indicadores e índices de degradación de suelos en la región central templada húmeda de Argentina. In Proceedings of the XV Congreso Latinoamericano de Ciencia del Suelo and V Congreso Cubano de la Ciencia del Suelo, Varadero, Cuba, 11 November 2001. (In Spanish)
- Becker, A.R. Evaluación del Proceso de Degradación de Suelos por Erosion Hídrica en una Subcuenca de la Región Pedemontana del Suroeste de la Provincial de Cordoba, Argentina. Ph.D. Thesis, National University of Río Cuarto, Córdoba, Argentina, 19 October 2006. [Google Scholar]
- Becker, A.R.; Díaz, E.; Cantú, M.P.; Meyers, C.; Cholaky, C. Aplicación del Modelo WEPP en la Predicción de Erosión Hídrica en el Suroeste de Córdoba, Argentina. In Proceedings of the XX Congreso Argentino de la Ciencia del Suelo, Salta, Argentina, 19 Sepetember 2006. (In Spanish)
- Arolfo, R.V.; Bedano, J.C.; Becker, A.R. El Impacto del Paquete Tecnológico Siembra Directa-soja Transgénica-glisfosato en la Mesofauna del suelo en la Cuenca de Gral. Deheza, Córdoba. In Proceedings of the XXI Congreso Argentino de la Ciencia del Suelo, San Luis, Argentina, 13 May 2008. (In Spanish)
- Arolfo, R.V.; Bedano, J.C.; Becker, A.R. Efectos del cultivo de soja transgénica en siembra directa sobre la taxocenosis de ácaros edáficos en haplustoles del centro de Córdoba. Ci Suelo 2010, 28, 191–200. (In Spanish) [Google Scholar]
- Domínguez, A.; Bedano, J.C.; Becker, A. Negative effects of no-till on soil macrofauna and litter decomposition in Argentina as compared with natural grasslands. Soil Tillage Res. 2010, 110, 51–59. [Google Scholar] [CrossRef]
- Domínguez, A.; Bedano, J.C. The adoption of no-till instead of reduced tillage does not improve some soil quality parameters in Argentinean Pampas. Appl. Soil Ecol. 2016, 98, 166–176. [Google Scholar] [CrossRef]
- Poisot, A.; Speedy, A.; Kueneman, E. Good agricultural practices—A working concept. In Proceedings of FAO Internal Workshop on Good Agricultural Practices, Rome, Italy, 27–29 October 2004.
- Albertengo, J.; Belloso, C.; Giraudo, M.; Peiretti, R.; Permingeat, H.; Wall, L. Chapter 15: Conservation agriculture in Argentina. In Conservation Agriculture: Global Prospects and Challenges; Jat, R., Sahrawat, K., Kassam, A., Eds.; CABI: Oxfordshire, UK, 2013; pp. 352–374. [Google Scholar]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture—Frequently Asked Questions. Available online: www.fao.org/ag/ca/doc/Y3783e.pdf (accessed on 10 March 2016).
- Palau, H.; Senesi, S.; Mogni, L.; Ordóñez, I. Impacto Económico Macro y Micro de Malezas Resistentes en el Agro Argentino; ADAMA-FAUBA Pub.: Buenos Aires, Argentina, 2015; p. 68. (In Spanish) [Google Scholar]
- Papa, J.C. Malezas Tolerantes y Resistente a Herbicidas; Publicación Miscelánea N° 112: Buenos Aires, Argentina, 2008; pp. 143–149. (In Spanish) [Google Scholar]
- Powles, S.B. Review Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest. Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef] [PubMed]
- AAPRESID. Red de Conocimiento de Malezas Resistentes. Available online: http://www.aapresid.org.ar/rem/ (accessed on 10 March 2016). (In Spanish)
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms, 3rd ed.; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Glyphosate Factsheet. Available online: http://www.mindfully.org/Pesticide/Roundup-Glyphosate-Factsheet-Cox.htm (accessed on 10 March 2016).
- Chan, K.Y. An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Tillage Res. 2001, 57, 179–191. [Google Scholar] [CrossRef]
- Sasal, M.C.; Andriulo, A.; Taboada, M.A. Soil porosity characteristics on water dynamics under direct drilling in Argiudolls of the Argentinean Rolling Pampas. Soil Tillage Res. 2006, 87, 9–18. [Google Scholar] [CrossRef]
- SENASA. 2014. Available online: http://www.mapo.org.ar/wp-content/uploads/2014/05/informe-senasa-2013.pdf (accessed on 12 August 2015). (In Spanish)
- Lampkin, N. Organic farming: Sustainable agriculture in practice. In The Economics of Organic Farming. An International Perspective; Lampkin, N., Padel, S., Eds.; CABI: Oxford, UK, 1994. [Google Scholar]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Van Eekeren, N.; de Boer, H.; Hanegraaf, M.; Bokhorst, J.; Nierop, D.; Bloem, J.; Schoutenf, T.; de Goedeg, R.; Brussaard, L. Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol. Biochem. 2010, 42, 1491–1504. [Google Scholar] [CrossRef]
- Tuck, S.L.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.A.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Pengue, W.A. Agricultura Industrial y Transnacionalizacion en America Latina; GEPAMA-PNUMA: Mexico DF, Mexico, 2005; p. 221. (In Spanish) [Google Scholar]
- Scholes, M.C.; Scholes, R.J. Dust unto dust. Science 2013, 342, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Aira, M.; McNamara, N.P.; Piearce, T.G.; Domínguez, J. Microbial communities of Lumbricus terrestris L. middens: Structure, activity, and changes through time in relation to earthworm presence. J. Soils Sediments 2009, 9, 54–61. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Edwards, C.A.; Zhang, Q.; Parmelee, R.W.; Allen, M. Indirect effects of earthworms on microbial assimilation of labile carbon. Appl. Soil Ecol. 2002, 20, 255–261. [Google Scholar] [CrossRef]
- Bedano, J.C.; Cantu, M.P.; Doucet, M.E. Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Appl. Soil Ecol. 2006, 32, 293–304. [Google Scholar] [CrossRef]
- Bedano, J.C.; Cantu, M.P.; Doucet, M.E. Soil springtails (Hexapoda: Collembola), symphylans and pauropods (Arthropoda: Myriapoda) under different management systems in agroecosystems of the subhumid Pampa (Argentina). Eur. J. Soil Biol. 2006, 42, 107–119. [Google Scholar] [CrossRef]
- Domínguez, A.; Bedano, J.C.; Becker, A.; Arolfo, R. Organic farming fosters agroecosystem functioning in Argentinian temperate soils: Evidence from litter decomposition and soil fauna. Appl. Soil Ecol. 2014, 83, 170–176. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.M.N.; van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Brussaard, L.; de Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 2010, 19, 287–302. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.; Gioia, C.; Measey, G.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Martínez, P.; Narciso, E.V. Mesofauna. In Biología y Ecología de la Fauna Del Suelo, 1st ed.; Momo, F.R., Falco, L.B., Eds.; Imago Mundi: Buenos Aires, Argentina, 2009; pp. 9–21. (In Spanish) [Google Scholar]
- Wall, D.H.; Bardgett, R.D.; Behan-Pelletier, V.; Herrick, J.E.; Jones, T.H.; Six, J.; Strong, D.R. Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Sagoff, M. The quantification and valuation of ecosystem services. Ecol. Econ. 2011, 70, 497–502. [Google Scholar] [CrossRef]
- Adams, W.M. The value of valuing nature. Science 2014, 346, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.; van der Putten, W. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- El Titi, A. Tillage in Agroecosystems, the synthesis. In Soil Tillage in Agroecosystems; El Titi, A., Ed.; CRC Press: Boca Raton, FL, USA, 2003; p. 384. [Google Scholar]
- López, A.N.; Vincini, A.M.; Clemente, N.L.; Manetti, P.L.; Carmona, D.M.; Álvarez Castillo, H.A. Densidad estacional y distribución vertical de los Enchytraeidae (Annelida: Oligochaeta) en diferentes sistemas de producción. Ci Suelo 2005, 23, 115–121. (In Spanish) [Google Scholar]
- Lietti, M.; Gamundi, J.C.; Montero, G.; Molinari, A.; Bulacio, V. Efecto de dos sistemas de labranza sobre la abundancia de artrópodos que habitan en el suelo. Ecol. Austral 2008, 18, 71–78. (In Spanish) [Google Scholar]
- Gizzi, A.H.; Álvarez Castillo, H.A.; Manetti, P.L.; López, A.N.; Clemente, N.L.; Studdert, G.A. Caracterización de la meso y macrofauna edáfica en sistemas de cultivo del Sudeste Bonaerense. Ci Suelo 2009, 27, 1–9. (In Spanish) [Google Scholar]
- Duhour, A.; Costa, C.; Momo, F.; Falco, L.; Malacalza, L. Response of earthworm communities to soil disturbance: Fractal dimension of soil and species’ rank-abundance curves. Appl. Soil Ecol. 2009, 43, 83–88. [Google Scholar] [CrossRef]
- Manetti, P.L.; López, A.N.; Clemente, N.L.; Faberi, A.J. Tillage system does not affect soil macrofauna in southeastern Buenos Aires province, Argentina. Span. J. Agric. Res. 2010, 8, 377–384. [Google Scholar] [CrossRef]
- Masín, C.E.; Rodríguez, A.R.; Maitre, M.I. Evaluación de la abundancia y diversidad de lombrices de tierra en relación con el uso del suelo en el cinturón hortícola de Santa Fe (Argentina). Ci Suelo 2011, 29, 21–28. (In Spanish) [Google Scholar]
- Maitre, M.I.; Rodríguez, A.R.; Masín, C.E.; Ricardo, T. Chapter 2: Evaluation of earthworms present on natural and agricultural-livestock soils of the center northern litoral santafesino, República Argentina. InTech 2012. [Google Scholar] [CrossRef]
- Díaz Porres, M.; Rionda, M.; Duhour, A.; Momo, F.R. Artrópodos del suelo: Relaciones entre la composición faunística y la intensificación agropecuaria. Ecol. Austral 2014, 24, 327–334. (In Spanish) [Google Scholar]
- Falco, L.B.; Sandler, R.; Momo, F.; Di Ciocco, C.; Saravia, L.; Coviella, C. Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables. PeerJ 2015. [Google Scholar] [CrossRef] [PubMed]
- Bedano, J.C.; Domínguez, A.; Arolfo, R.; Wall, L.G. Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with different soil types. Soil Tillage Res. 2016, 158, 100–109. [Google Scholar] [CrossRef]
- Marasas, E.; Sarandón, S.J.; Cicchino, A. Efecto de la labranza sobre la coleopterofauna edáfica en un cultivo de trigo en la Provincia de Buenos Aires. Ci Suelo 1997, 15, 59–63. (In Spanish) [Google Scholar]
- Marasas, E.; Sarandón, S.J.; Cicchino, A. Changes in soil arthropod functional group in a wheat crop under conventional and no tillage systems in Argentina. Appl. Soil Ecol. 2001, 18, 61–68. [Google Scholar] [CrossRef]
- Manetti, P.L.; Faberi, A.J.; Clemente, N.L.; López, A.N. Macrofauna activity density in contrasting tillage systems in Buenos Aires Province, Argentina. Agron. J. 2013, 105, 1780–1786. [Google Scholar] [CrossRef]
- Pilatti, M.A.; de Orellana, J.A.; Priano, L.J.; Felli, O.M.; Grenon, D.A. Incidencia de manejos tradicionales y conservacionistas sobre propiedades físicas, químicas y biológicas de un Argiudol en el sur de Santa Fé. Ci Suelo 1988, 6, 19–29. (In Spanish) [Google Scholar]
- Gomez, M.; Krüger, H.; Sagardoy, M. Actividad biológica en un suelo de la zona semiárida bonaerense cultivado con la secuencia soja-trigo bajo tres prácticas culturales. Ci Suelo 1996, 14, 37–41. (In Spanish) [Google Scholar]
- Bedano, J.C.; Ruf, A. Soil predatory mite communities (Acari: Gamasina) in agroecosystems of Central Argentina. Appl. Soil Ecol. 2007, 36, 22–31. [Google Scholar] [CrossRef]
- Ferraro, D.O.; Ghersa, C.M. Exploring the natural and human-induced effects on the assemblage of soil microarthropod communities in Argentina. Eur. J. Soil Biol. 2007, 43, 109–119. [Google Scholar] [CrossRef]
- Bedano, J.C.; Dominguez, A.; Arolfo, R. Assessment of soil biological degradation using mesofauna. Soil Tillage Res. 2011, 117, 55–60. [Google Scholar] [CrossRef]
- The Degree of Change of Collembolan Community Structure Related to Anthropic Soil Disturbance. Available online: https://peerj.com/preprints/721/ (accessed on 10 March 2016).
- Bedano, J.C.; Ruf, A. Sensitivity of different taxonomic levels of soil Gamasina to land use and anthropogenic disturbances. Agric. For. Entomol. 2010, 12, 203–212. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant. Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Gomiero, T. Alternative land management strategies and their impact on soil conservation. Agriculture 2013, 3, 464–483. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2015. [Google Scholar] [CrossRef] [PubMed]
- Environmental Impact of Organic Agriculture. Available online: https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f20063178465 (accessed on 10 March 2016).
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 24, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
Crop | Argentina | USA | Brazil | China, Mainland | India |
---|---|---|---|---|---|
Production (tons) | |||||
Soybean | 49,306,200 (3rd) | 91,389,350 (1st) | 81,724,477 (2nd) | 11,950,500 (4th) | 11,948,000 (5th) |
Maize | 32,119,211 (4th) | 353,699,441 (1st) | 80,273,172 (3rd) | 218,489,000 (2nd) | 23,290,000 (6th) |
Sugar cane | 23,700,000 (13th) | 27,905,910 (10th) | 768,090,444 (1st) | 128,200,912 (3rd) | 341,200,000 (2nd) |
Wheat | 9,188,339 (17th) | 57,966,656 (3rd) | 5,738,473 (23th) | 121,926,400 (1st) | 93,510,000 (2nd) |
Barley | 4,705,160 (9th) | 4,682,735 (10th) | 330,682 (38th) | 1,699,300 (19th) | 1,750,000 (18th) |
Sorghum | 3,635,837 (5th) | 9,881,788 (1st) | 2,126,179 (8th) | 2,891,500 (6th) | 5,280,000 (3rd) |
Sunflower | 3,104,420 (3rd) | 917,060 (12th) | 108,838 (27th) | 2,423,241 (4th) | 504,000 (17th) |
Citation | Agricultural Systems | Faunal Group | Main Results |
---|---|---|---|
López et al. [113] | NA, organic livestock, intensive fertilization livestock and CT. | Enchytraeids. | No clear pattern according to management systems. |
Lietti et al. [114] | CT and NT with soybean, maize and fallow. | Macrofauna, trophic groups, Carabidae. | Phytophagous-detritivorous, predaceous arthropods and spiders more abundant in NT. Higher predator activity in CT. Higher spider frequency in NT. No difference in carabid density but greater activity under CT. |
Gizzi et al. [115] | Combination of CT and NT with different % of pasture and agriculture, and four N fertilization rates. | Macrofauna. | Higher abundances of macrofauna at the time of pasture in the rotation and in NT than in CT (in one of the sampling years). No differences between different fertilization treatments. |
Duhour et al. [116] | NA and three agricultural systems in a gradient of years of cultivation and frequency of annual crops. | Earthworms (species level). | Highest abundance in the least disturbed agricultural site. Highest richness in NA and lowest in the most disturbed agricultural site. |
Domínguez et al. [77] | NA and NT. | Macrofauna, high range taxa and species level. | Lower richness and diversity in NT. Low abundance of earthworms, ants, beetles and spiders in NT. |
Manetti et al. [117] | CT and NT. | Macrofauna, high range taxa. | In general, no differences in abundance. When different, patterns changed in different sampling times for total macrofauna, earthworms, Chilopoda, Diplopoda and Enchytraeidae. |
Masín et al. [118] | CT and NT with and without added organic amendments. | Earthworms (species level). | Highest abundance in NT with organic amendments. Richness: only 3 species, all exotic species. |
Maitre et al. [119] | Livestock in woodland, livestock in grassland, fallow field and NT with and without added organic amendments. | Earthworms. | Very low abundances in NT without organic amendments. Highest abundances in NT with organic amendments. |
Díaz Porres et al. [120] | NA, CT and livestock. | Macrofauna, high range taxa (Order), in some cases, Family. | Total density and richness were higher in NA than in CT, with livestock showing intermediate values. |
Domínguez et al. [102] | NA, CT and NT in conventional farming; organic farming with tillage (ORG). | Macrofauna, earthworms. | Higher macrofauna abundances in ORG than in both CT and NT. No differences between CT and NT. Earthworms absent in NT and more abundant in ORG than in CT. |
Falco et al. [121] | NA, recent agricultural sites (2 years), agricultural sites with 50 years of continuous intensive agriculture, currently under NT. | Earthworms (species level). | Highest earthworm abundance in the highest soil use intensity. Earthworm community dominated by exotic species (mainly Aporrectodea spp.). |
Domínguez and Bedano [78] | NA, NT and RT. | Macrofauna, high range taxa; species for earthworms, beetles and ants. | Lower abundance of earthworms, ants, beetles and spiders in agriculture than in NA. More spiders in NT than in RT, and the opposite for ants and potworms. Profound changes in species composition of ants and beetles in both NT and RT compared to NA. |
Domínguez and Bedano [68] | NA, organic farming, CT and NT. | Earthworms (species level) and enchytraeids. | Decrease in earthworm richness from 5 in NA to 2 in ORG and 1 in NT and CT. Highest abundance in NA, followed by ORG. Enchytraeid abundance according to the gradient NT>ORG>PT>GR. |
Bedano et al. [122] | NA, CT, and two variants of NT: NT with good agricultural practices (GAPs) (intensive crop rotation, nutrient replacement, and minimized agrochemical use) and NT without GAPs (No-GAP) (soybean monoculture, low nutrient replacement and high agrochemical use). | Macrofauna, high range taxa. | Earthworms more abundant in NA. No differences between GAP and No-GAP. Ant abundance according to the gradient: NA > GAP > No-GAP = CT. Soil and litter beetle abundance according to the gradient: NA > GAP = No-GAP > CT. |
Marasas et al. [123] | NT and CT. | Pitfall study: Beetles (total) and Carabidae (species). | Higher abundance and higher diversity of Carabidae in NT than in CT. |
Marasas et al. [124] | NT, CT and a field boundary without agricultural use. | Pitfall study: Macrofauna, trophic groups. | Predators more abundant, detritivores slightly more abundant and similarly abundant phytophages in NT compare to CT. |
Manetti et al. [125] | CT and NT during three cropping seasons. | Pitfall study: Macrofauna, high range taxa. | Total macrofauna more abundant in NT than in CT for some cycles. |
Citation | Agricultural systems | Faunal group | Main results |
---|---|---|---|
Pilatti et al. [126] | NA, a mixed system (cattle and conventional agriculture), continuos agriculture for 15 years with vertical tillage, and continuos agriculture for 30 years with plough tillage. | Total mesofauna. | Reduction of abundances following the management intensity gradient. |
Gómez et al. [127] | Chemical fallow (NT); mechanical fallow with vertical tillage; intensive mechanical fallow with vertical tillage and mouldboard plough. | Total mesofauna. | No differences in mesofauna among treatments. |
Bedano et al. [100] | Gradient of increasing land use intensity: NA, cattle, mixed and agricultural. | Total Acari and Acari, high range taxa. | Reduction of abundances of oribatid, mesostigmatid and total mites following the gradient. |
Bedano et al. [101] | Gradient of increasing land use intensity: NA, cattle, mixed and agricultural. | Collembola, Symphyla and Pauropoda. | Lower density of collembolans and pauropods in agricultural system. |
Bedano & Ruf [128] | Gradient of increasing land use intensity: NA, cattle, mixed and agricultural. | Gamasina species. | Reduction of abundance and richness of Gamasina following the gradient of land use intensity. |
Ferraro & Ghersa [129] | Cropping management variables were summarized by means of descriptors of pesticide use and tillage intensity, among others | Acari, Collembola. | Mite abundance increased and Collembola decreased with increasing number of pesticides used. Higher mite density with less tillage impact. |
Gizzi et al. [115] | Combination of CT and NT with different % of pasture and agriculture, and four N fertilization rates. | Total mesofauna. | Higher abundances in implanted pastures than in agriculture, in one of the sampling years. |
Arolfo et al. [76] | NA and NT. | Total Acari and, high range taxa. | Higher abundances in NA in both litter and soil layer. Oribatid and mesostigmatid associated with NA. Prostigmata and Astigmata associated with NT. |
Bedano et al. [130] | 10 arable sites (NT, RT and CT) compared with three benchmark systems: NA, cattle-raising (CA), and mixed production system (MI) (cattle raising and agriculture). | High range taxa of Acari. | Most arable sites were below the conservative threshold of the 25th percentile of the NA and CA benchmarks, which were similar to each other. |
Sandler et al. [131] | NA, NT and cattle grazing. | Collembola (Families). | Diversity and abundance increased together with the increase in land use intensity. The response varied with Collembola families. |
Domínguez et al. [102] | NA, CT and NT in conventional farming, organic farming with tillage (ORG). | Mesofauna, Collembola. | Total mesofauna abundance following the gradient: GR = ORG > NT = CT. Collembola abundances following the gradient: GR = ORG = NT > CT. |
Bedano et al. [122] | NA, CT, and two variants of NT: NT with good agricultural practices (GAPs) (intensive crop rotation, nutrient replacement, and minimized agrochemical use) and NT without GAPs (No-GAP) (soybean monoculture, low nutrient replacement and high agrochemical use). | High range taxa of Acari. | Litter oribatid and prostigmatid mites more abundant following the gradient. Soil oribatids with no differences between GAP and No-GAP. Litter mesostigmatid followed the gradient: NA > GAP > CT > No-GAP, whereas soil mesostigmatids were more abundant in NA followed by No-GAP. Litter collembolans and soil prostigmatids followed NA > GAP > No-GAP = CT. Soil collembolans more abundant in NA. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedano, J.C.; Domínguez, A. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas. Sustainability 2016, 8, 653. https://doi.org/10.3390/su8070653
Bedano JC, Domínguez A. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas. Sustainability. 2016; 8(7):653. https://doi.org/10.3390/su8070653
Chicago/Turabian StyleBedano, José Camilo, and Anahí Domínguez. 2016. "Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas" Sustainability 8, no. 7: 653. https://doi.org/10.3390/su8070653
APA StyleBedano, J. C., & Domínguez, A. (2016). Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas. Sustainability, 8(7), 653. https://doi.org/10.3390/su8070653