Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS
Abstract
:1. Introduction
2. Case Study
3. Method: An Integrated Assessment Framework for Jatropha Crop Production
3.1. Alternatives of Analysis
3.2. Assessment Criteria
- “Fuerteventura is a system in a critical state from an energy perspective, and wind power is the most profitable renewable energy in the Canary Islands today” (electricity supplier UNELCO-ENDESA manager).
- “Water consumption data for the island and future strategies for piping treated water are key aspects to estimate the surface area that can be irrigated in the short and medium term” (Island Water Council of Fuerteventura manager).
- “The dependence on non-conventional water resources is obvious both for the population and agriculture” (Island Water Council of Fuerteventura expert). Moreover, it is worth highlighting the need to take advantage of recycled water, as currently, owing to the lack of water piping, a high percentage of this water is discharged directly into the sea.
- Regarding management and maintenance of desalination and wastewater treatment plants, it can be observed that even though they are two completely different types of infrastructures, in both cases the energy requirements for the production of industrial drinking water will increase costs (managers and technicians of water treatment plants).
- Finally, town hall agricultural technicians confirm the abandonment of the farming sector and the need to search for alternatives. They mention the need to take into account the goat-herding sector, which is of importance on the island, to avoid possible conflicts with the implementation of this project on an island scale.
4. Results
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Commission (EC). EU Transport in Figures. Statistical Pocketbook; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- European Commission (EC). EU Transport in Figures. Statistical Pocketbook; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Union. Promotion of the Use of Energy from Renewable Sources; Oficial Journal of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Commission (EC). Estrategia de la UE Para Los biocarburantes; European Commission: Brussels, Belgium, 2006. (In Spanish) [Google Scholar]
- Delfort, B.; Durand, I.; Hillion, G.; Jaecker-Voirol, A.; Montagne, X. Glycerin for new biodiesel formulation. Oil Gas Sci. Technol.—Revve del’IFP 2008, 63, 395–404. [Google Scholar]
- Findlater, K.M.; Kandlikar, M. Land use and second-generation biofuel feedstocks: The unconsidered impacts of Jatropha biodiesel in Rajasthan, India. Energy Policy 2011, 39, 3404–3413. [Google Scholar] [CrossRef]
- Fulton, L.; Howes, T.; Hardy, J. Biofuels for Transport: An International Perspective; International Energy Agency (IEA): Paris, France, 2004. [Google Scholar]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Mitchell, D. A Note on Rising Food Prices; Development Prospects Group, World Bank, Policy Research Working Paper Number 4682; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Pimentel, D.; Patzek, T.; Cecil, G. Ethanol production: Energy, economic, and environmental losses. Rev. Environ. Contam. Toxicol. 2007, 189, 25–41. [Google Scholar] [PubMed]
- Pimentel, D.; Patzek, T.W. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Russi, D. An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone? Energy Policy 2008, 36, 1169–1180. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. The Biofuel Delusion: The Fallacy of Large-Scale Agrobiofuel Production; Earthscan: London, UK, 2009. [Google Scholar]
- Harrison, P. EU Drafts Reveal Biofuel’s ‘Environmental Damage’; Reuters: London, UK, 2010. [Google Scholar]
- Herendeen, R.A. Net Energy Analysis: Concepts and Methods. In Encyclopedia of Energy; Elsevier Inc.: London, UK, 2004; Volume 4. [Google Scholar]
- Cleveland, C.J. Net energy analysis. In Encyclopedia of Earth; Environmental Information Coalition, National Council for Science and the Environment: Washington, DC, USA, 2010; Available online: http://www.eoearth.org/article/Net_energy_analy sis (accessed on 30 September 2011).
- Francis, G.; Edinger, R.; Becker, K. A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum 2005, 29, 12–24. [Google Scholar] [CrossRef]
- Chten, W.M.J.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha bio-diesel production and use. Biomass Bioenergy 2008, 32, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Lee, K.T. Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study. Appl. Energy 2013, 103, 712–720. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crop. Prod. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Carriquiry, M.A.; Du, X.; Timilsina, G.R. Second generation biofuels: Economics and policies. Energy Policy 2011, 39, 4222–4234. [Google Scholar] [CrossRef]
- Dyer, G.A.; Taylor, J.E. Impacts of the US Ethanol Boom in Rural Mexico. In Proceedings of the 84th Annual Conference of Agricultural Economics Society (AES), University of Edinburgh, Scotland, UK, 29–31 March 2010.
- Wise, T. The Cost to Mexico of US Corn Ethanol Expansion; Global Development and Environment Institute: Medford, MA, USA, 2012. [Google Scholar]
- Wise, T. The Cost to Developing Countries of US Corn Ethanol Expansion; Global Development and Environment Institute: Medford, MA, USA, 2012. [Google Scholar]
- Ewing, M.; Msangi, S. Biofuels production in developing countries: Assessing tradeoffs in welfare and food security. Environ. Sci. Policy 2009, 12, 520–528. [Google Scholar] [CrossRef]
- Rathmann, R.; Szklo, A.; Schaeffer, R. Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renew. Energy 2010, 35, 14–22. [Google Scholar] [CrossRef]
- Demirbas, A. Political, economic and environmental impacts of biofuels: A review. Appl. Energy 2009, 86, S108–S117. [Google Scholar] [CrossRef]
- Stromberg, P.M.; Gasparatos, A.; Lee, J.S.H.; Garcia-Ulloa, J.; Koh, L.P.; Takeuchi, K. Impacts of Liquid Biofuels on Ecosystem Services and Biodiversity; Institute of Advanced Studies—United Nations University: Yokohama, Tokyo, 2010; p. 51. [Google Scholar]
- Koh, L.P.; Ghazoul, J. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biol. Conserv. 2008, 141, 2450–2460. [Google Scholar] [CrossRef]
- Soil_Survey_Staff. Keys to Soil Taxonomy; USDA—Natural Resources Conservation Service Soils: Washington, DC, USA, 2014.
- Khurana, M.P.S.; Singh, P. Waste Water Use in Crop Production: A Review. Resour. Environ. 2012, 2, 116–131. [Google Scholar] [CrossRef]
- Everson, C.S.; Mengistu, M.G.; Gush, M.B. A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass Bioenergy 2013, 59, 59–69. [Google Scholar] [CrossRef]
- Heller, J. Physic Nut. Jatropha Curcas L. Promoting the Conservation and Use Underutilized and Neglected Crops; International Plant Genetic Resource Institute and Institute of Plant Genetic and Crop Plant Research: Rome, Italy, 1996. [Google Scholar]
- Tewari, D.N. Jatropha and Biodiesel, 1st ed.; Oceans Book Ltd: New Delhi, India, 2007. [Google Scholar]
- Pere, A.M.; Lele, S.; Kallis, G.; Martinez-Alier, J. The political ecology of Jatropha plantations for biodiesel in Tamil Nadu, India. J. Peasant. Stud. 2010, 37, 875–897. [Google Scholar] [CrossRef]
- Dinse, K.; Lund, K.; Scavia, D. Benefits of Integrated Assessment: Information for Decision Makers, Project Leaders and Scientists; Michigan Sea Grant y Graham Environmental Sustainability Institute: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Díaz, F.J.; Tejedor, M.; Jiménez, C.; Dahigren, R.A. Soil fertility dynamics in runoff-capture agriculture, Canary Islands, Spain. Agric. Ecosyst. Environ. 2011, 144, 253–261. [Google Scholar] [CrossRef]
- Tejedor, M.L.; Jiménez, C.; Díaz, F.; Rivero, J.L.; Corral, S.; Legna, C. Plan Estratégico de Lucha Contra la Desertificación en Canarias. Propuesta de Medidas Prioritarias; Gobierno de Canarias: Santa Cruz de Tenerife, Spain, 2013. (In Spanish) [Google Scholar]
- Gobierno_de_Canarias. Medio ambiente en canarias. In Informes de Coyuntura—Suelos; Gobierno de Canarias. Consejería de Medio Ambiente: Las Palmas, Spain, 2012.
- Rivero Ceballos, J.L. Canarias, 1936–2000: El Modelo Económico Reciente. In Economía e Insularidad Siglos XIX-XX; Universidad de La Laguna: Santa Cruz de Tenerife, Spain, 2007; pp. 53–86. [Google Scholar]
- Dorta-Santos, M.; Tejedor, M.; Jiménez, C.; Hernandez-Moreno, J.M.; Palacios-Diaz, M.P.; Diaz, F.J. Recycled Urban Wastewater for Irrigation of Jatropha curcas L. in Abandoned Agricultural Arid Land. Sustainability 2014, 6, 6902–6924. [Google Scholar]
- Dorta-Santos, M.; Tejedor, M.; Jemenez, C.; Hernandez-Moreno, J.M.; Palacios-Diaz, M.P.; Diaz, F.J. Evaluating the sustainability of subsurface drip irrigation using recycled wastewater for a bioenergy crop on abandoned arid agricultural land. Ecol. Eng. 2015, 79, 60–68. [Google Scholar] [CrossRef]
- Benton, V.; Stewart, T.J. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer Acadmic Publishers: Dordrecht, The Netherland, 2002. [Google Scholar]
- De Marchi, B.; Funtowicz, S.O.; Cascio, S.L.; Munda, G. Combining participative and institutional approaches with multicriteria evaluation. An empirical study for water issues in Troina, Sicily. Ecol. Econ. 2000, 34, 267–382. [Google Scholar]
- Corral Quintana, S. Una metodología intergrada de exploración y comprensión de los procesos de elaboración de políticas públicas. In Departamento de Economía de las Instituciones, Estadística Económica y Econometría; Universidad de La Laguna: Santa Cruz de Tenerife, Spain, 2004. [Google Scholar]
- Munda, G. Social multi-criteria evaluation: Methodological foundations and operational consequences. Eur. J. Oper. Res. 2004, 158, 662–677. [Google Scholar] [CrossRef]
- Paneque Salgado, P.; Corral Quintana, S.; Guimarães Pereira, A.; del Moral Ituarte, L.; Pedregal Mateos, B. Participative Multi-Criteria Analysis for the Evaluation of Water Governance Alterantives. A Case in the Costa del Sol (Málaga). Ecol. Econ. 2009, 68, 990–1005. [Google Scholar] [CrossRef]
- Guimarães Pereira, Â.; Corral Quintana, S. From Technocratic to Participatory Decision Support Systems: Responding to the New Governance Initiatives. J. Geogr. Inf. Decis. Anal. 2002, 6, 95–107. [Google Scholar]
- Diakoulaki, D.; Karangelis, F. Multi-criteria decision analysis and cost–benefit analysis of alternative scenarios for the power generation sector in Greece. Renew. Sustain. Energy Rev. 2007, 11, 716–727. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Cavallaro, F.; Ciraolo, L. A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 2005, 33, 235–244. [Google Scholar] [CrossRef]
- Neudoerffer, R.C.; Malhotra, P.; Ramana, P.V. Participatory rural energy planning in India—A policy context. Energy Policy 2001, 29, 371–381. [Google Scholar] [CrossRef]
- Moreira da Silva, M.; Lopes, J.A.P.; Matos, M.A. Multicriteria Decision Aid for Planning Energy Storage and Sustainable Mobilitiy—The São Miguel Island Case Study; PowerTech IEEE: Trondheim, Norway, 2011; pp. 19–23. [Google Scholar]
- Terrados, J.; Almonacid, G.; Hontoria, L. Regional energy planning through SWOT analysis and strategic planning tools Impact on renewables development. Renew. Sustain. Energy Rev. 2007, 11, 1275–1287. [Google Scholar] [CrossRef]
- Dinh, L.T.T.; Guo, Y.; Mannan, M.S. Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustain. Energy 2009, 28, 38–46. [Google Scholar] [CrossRef]
- Munda, G. NAIADE Method: A Short Description; Universitat Autònoma de Barcelona (UAB): Barcelona, Spain, 1995. [Google Scholar]
- Gobierno de Canarias. Plan de ECOGESTIÓN en la Producción y Distribución de Agua de Canarias 2014–2020; Gobierno de Canarias: Las Palmas, Spain, 2014. [Google Scholar]
- BOE. Régimen jurídico de la reutilización de las aguas depuradas; Gobierno de España: Madrid, España, 2007. [Google Scholar]
- Zhang, F.; Johnson, D.M.; Sutherland, J.W. A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenergy 2011, 35, 3951–3961. [Google Scholar] [CrossRef]
- Cabildo_de_Fuerteventura. El Consejo Insular de Aguas Invierte 2.4 Millones de Euros en la Conducción y Depósitos de Aguas de Uso Agrícola. 2010 01–2015. Available online: http://www.cabildofuer.es/portal/p_14_final_Distribuidor_2.jsp?seccion=s_fnot_d4_v1.jsp&contenido=2377&tipo=8&nivel=1400 (accessed on 24 July 2015).
- European Commission (EC). An EU Stategy for Biofuels; COM(2006)34 Final; European Commission: Brussels, Belgium, 2006. [Google Scholar]
Institution | Field | Type of Information |
---|---|---|
Degremont—Water Treatment Plant (WTP) | Water (urban waste water) | WTP from Puerto del Rosario, treatments applied, water production, water quality, energy consumption |
UNELCO—Electric Energy Generation Industry | Energy | Energy scene, issues, production, and consumption |
CAAF—Fuerteventura Water Supplier Consortium | Water (desalted) | Water production, energy consumption |
Antigua City-Hall | Agriculture | |
Pozo Negro Experimental Farm | Agriculture (experimental Jatropha crop) | Experimental crop visit, technical agriculture issues, irrigation and pumping technics, harvesting procedures, etc. |
Water Island Council | Water | Water issues, water distribution, water consumption, water desalination and depuration, natural water resources status, water uses at island scale |
Cabildo de Fuerteventura (Island Government), Canarian Agriculture Agency local bureau (Agencia de Extensión Agraria de Fuerteventura) | Agriculture | 1. Agriculture perspectives, issues involving agriculture and sheep breeding 2. Agriculture island conditions, farming land circumstances, biofuels and renewable energy entrepreneurship and perspectives |
Puerto del Rosario City Hall | Agriculture | Agriculture local scene, water treatment availability, and abandoned farmed availability |
Antigua City-Hall | Agriculture | |
Tuineje City-Hall | Agriculture | |
Betancuria City-Hall | Agriculture |
Soil | Irrigation | ETP | Water |
---|---|---|---|
TT | Surface | 100% | Recycled |
Desalinated | |||
75% | Recycled | ||
Desalinated | |||
Sub-Surface | 100% | Recycled | |
Desalinated | |||
75% | Recycled | ||
Desalinated | |||
TH | Surface | 100% | Recycled |
Desalinated | |||
75% | Recycled | ||
Desalinated | |||
Sub-Surface | 100% | Recycled | |
Desalinated | |||
75% | Recycled | ||
Desalinated |
Dimension | Criterion | Units | Score Type | Goal Type |
---|---|---|---|---|
ECONOMIC | Sampling purchase cost | €/ha | Numeric & Fuzzy | Minimize |
Initial investment | €/ha | Numeric | Minimize | |
Water cost | €/month/ha | Numeric & Fuzzy | Minimize | |
Direct labor cost | €/month | Numeric & Fuzzy | Minimize | |
Indirect labor cost | €/month | Numeric & Fuzzy | Minimize | |
Phytosanitary and fertilizer cost | €/unit | Numeric & Fuzzy | Minimize | |
Energy Cost | €/month | Numeric | Minimize | |
TECHNICAL | Seeds Production (in a yearly basis) | Tn/ha | Numeric | Maximize |
ENVIRONMENTAL | Water consumption | m3/ha/month | Numeric | Minimize |
Energy Consumption | kWh/month/ha | Numeric & Fuzzy | Minimize |
PBDS100 | PBDS75 | PBDE100 | PBDE75 | PBRS100 | PBRS75 | PBRE100 | PBRE75 | GBDS100 | GBDS75 | GBDE100 | GBDE75 | GBRS100 | GBRS75 | GBRE100 | GBRE75 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy Consumption | 2239.34 | 1650.97 | 2239.34 | 1650.97 | 744.36 | 656.80 | 744.36 | 656.80 | 2239.34 | 1650.97 | 2239.34 | 1650.97 | 744.36 | 656.80 | 744.36 | 656.80 |
Water Consumption | 1452.00 | 965.58 | 1452.00 | 965.58 | 1452.00 | 965.58 | 1452.00 | 965.58 | 965.58 | 965.58 | 1452.00 | 965.58 | 1452.00 | 965.58 | 1452.00 | 965.58 |
Water Cost at WTP | 871.20 | 579.35 | 871.20 | 579.35 | 435.60 | 355.79 | 435.60 | 289.67 | 871.20 | 579.35 | 871.20 | 579.35 | 435.60 | 289.67 | 435.60 | 289.67 |
Initial Investment | 12540 | 12540 | 13410 | 13410 | 12540 | 12540 | 13410 | 13410 | 12540 | 12540 | 13410 | 13410 | 12540 | 12540 | 13410 | 13410 |
2011 Seed Production | 0.125 | 0.1 | 0.27 | 0.086 | 0.504 | 0.517 | 0.841 | 0.183 | 0.147 | 0.093 | 0.319 | 0.706 | 1.241 | 0.684 | 1.407 | 1.064 |
2012 Seed Production | 0.15 | 0.311 | 0.212 | 0.197 | 1.407 | 1.108 | 1.202 | 0.952 | 0.05 | 0.114 | 0.069 | 0.505 | 1.016 | 0.678 | 0.51 | 0.429 |
2013 Seed Production | 0.592 | 0.647 | 0.622 | 0.481 | 1.949 | 1.811 | 1.763 | 1.354 | 0.095 | 0.231 | 0.249 | 0.471 | 1.434 | 0.933 | 0.947 | 0.863 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corral, S.; Romero Manrique de Lara, D.; Tejedor Salguero, M.; Jimenez Mendoza, C.C.; Legna-de la Nuez, D.; Dorta Santos, M.; Díaz Peña, F. Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS. Sustainability 2016, 8, 505. https://doi.org/10.3390/su8060505
Corral S, Romero Manrique de Lara D, Tejedor Salguero M, Jimenez Mendoza CC, Legna-de la Nuez D, Dorta Santos M, Díaz Peña F. Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS. Sustainability. 2016; 8(6):505. https://doi.org/10.3390/su8060505
Chicago/Turabian StyleCorral, Serafin, David Romero Manrique de Lara, Marisa Tejedor Salguero, Carmen Concepción Jimenez Mendoza, David Legna-de la Nuez, María Dorta Santos, and Francisco Díaz Peña. 2016. "Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS" Sustainability 8, no. 6: 505. https://doi.org/10.3390/su8060505
APA StyleCorral, S., Romero Manrique de Lara, D., Tejedor Salguero, M., Jimenez Mendoza, C. C., Legna-de la Nuez, D., Dorta Santos, M., & Díaz Peña, F. (2016). Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS. Sustainability, 8(6), 505. https://doi.org/10.3390/su8060505