Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms
Abstract
:1. Introduction
2. Material and Methods
2.1. Objective, Scope and Functional Unit
2.2. Description of the System and Its Components, Data Collection and Life Cycle Inventory
2.2.1. Facilities
CAGE
NET
MOORING
2.2.2. Operations in the Production Cycle
FEED
GROWTH
FUEL
2.3. Evaluation of the Impact of the Life Cycle
2.4. Interpretation of the Results
2.4.1. Uncertainty Analysis
2.4.2. Contribution Analysis
2.4.3. Sensitivity Analysis
- Alternative 1: 15% decrease in FCR.
- Alternative 2: 15% decrease in the FCR and 30% decrease in fuel consumption (70% FUEL).
- Alternative 3: a diet rich in maize gluten meal (40%).
- Alternative 4: all of the above factors.
3. Results and Discussion
3.1. Uncertainty Analysis (Monte Carlo)
3.2. Contribution Analysis
3.2.1. FACILITIES
3.2.2. FEED
3.2.3. GROWTH
3.2.4. FUEL
3.3. Sensitivity Analysis
3.3.1. Alternative 1: FCR Sensitivity Analysis
3.3.2. Alternative 2: Sensitivity Analysis of Fuel Consumption
3.3.3. Alternative 3: Sensitivity Analysis for Changes in Raw Materials of Feed
3.3.4. Alternative 4: All of the Above Factors
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Basurco, B.; Lovatelli, A.; García García, B. Current status of Sparidae aquaculture. In Sparidae. Biology and Aquaculture of Gilthead Sea Bream and Other Species; Pavlidis, M.A., Mylonas, C.C., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2011; pp. 1–50. [Google Scholar]
- Apromar Asociación Empresarial de Productores de Cultivos Marinos. La Acuicultura en España; Ministerio de Agricultura, Alimentación y Medioambiente, Gobierno de España: Madrid, Spain, 2015.
- Ruiz, J.M.; Pérez, M.; Romero, J. Effects of fish farm loading on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar. Pollut. Bull. 2001, 42, 749–760. [Google Scholar] [CrossRef]
- Cancemi, G.; De Falco, G.; Pergent, G. Effects of organic input from a fish farming facility on a Posidonia oceanica meadow. Estuar. Coast. Shelf Sci. 2003, 56, 961–968. [Google Scholar] [CrossRef]
- Holmer, M.; Pérez, M.; Duarte, C. Benthic primary producers: A neglected environmental problem in Mediterranean mariculture? Mar. Pollut. Bull. 2003, 46, 1372–1376. [Google Scholar] [CrossRef]
- Aguado-Giménez, F.; Ruiz, J.M. Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean Maërl algae community. Mar. Environ. Res. 2012, 74, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Baez Paleo, J.D. Ingeniería de la Acuicultura Marina: Instalaciones de Peces en el Mar; Publicaciones Científicas y Tecnológicas de la Fundación OESA: Madrid, Spain, 2009. [Google Scholar]
- Hargrave, B.T.; Duplisea, D.E.; Pfeiffer, E.; Wildish, D.J. Seasonal changes in benthic fluxes of dissolved oxygen and ammonium associated with marine cultured Atlantic salmon. Mar. Ecol. Prog. Ser. 1993, 96, 249–257. [Google Scholar] [CrossRef]
- Hargrave, B.T.; Holmer, M.; Newcombre, C.P. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar. Pollut. Bull. 2008, 56, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Lupatsch, Y.; Kissil, G.W. Predicting aquaculture waste from gilthead seabream (Sparus aurata) culture using a nutritional approach. Aquat. Living Resour. 1998, 11, 265–268. [Google Scholar] [CrossRef]
- Karakassis, I.; Hatziyanni, E.; Tsapakis, M.; Plaiti, W. Benthic recovery following cessation of fish farming: A series of sucesses and catastrophes. Mar. Ecol. Prog. Ser. 1999, 184, 205–218. [Google Scholar] [CrossRef]
- Mazzola, A.; Mirto, S.; La Rosa, T.; Fabiano, M.; Danovaro, R. Fish farming effects on benthic community structure in coastal sediments: Analysis of meiofaunal resilience. ICES J. Mar. Sci. 2000, 57, 1454–1461. [Google Scholar] [CrossRef]
- Black, K.D. Sustainability of aquaculture. In Environmental Impacts of Aquaculture; Black, K.D., Ed.; Sheffield Academic Press: Sheffield, UK, 2001; pp. 199–212. [Google Scholar]
- Cromey, C.J.; Nickell, T.D.; Black, K.D. DEPOMOD-modeling the deposition and biological effects of waste solids from marine cage farm. Aquaculture 2002, 214, 211–239. [Google Scholar] [CrossRef]
- Aguado-Giménez, F.; García García, B.; Martínez, F.J. In vivo total nitrogen and total phosphorus digestibility in Atlantic Bluefin tuna (Thunnus thynnus) under industrially intensive fattening conditions in Sutheast Spain Mediterranean coastal waters. Aquac. Nutr. 2004, 10, 413–419. [Google Scholar] [CrossRef]
- Piedecausa, M.A.; Aguado-Giménez, F.; García García, B.; Telfer, T. Total ammonia nitrogen leaching from feed pellets used in salmon aquaculture. J. Appl. Ichthyol. 2010, 26, 16–20. [Google Scholar] [CrossRef]
- Cho, C.Y.; Hynes, J.D.; Wood, K.R.; Yoshida, H.K. Quantification of fish culture wastes by biological (nutritional) and chemical (limnological) methods: The development of high nutrient dense (HND) diets. In Nutritional Strategies and Aquaculture Waste; Cowey, C.B., Cho, C.Y., Eds.; University of Guelph: Guelph, ON, Canada, 1991; pp. 37–50. [Google Scholar]
- Aguado-Giménez, F.; García García, B.; Hernádez, M.D.; Cerezo Valverde, J. Gross metabolic waste output estimates using a nutritional approach in Atlantic bluefin tuna (Thunnus thynnus) under intensive fattening conditions in western Mediterranean Sea. Aquac. Res. 2006, 37, 1254–1258. [Google Scholar] [CrossRef]
- Pitta, P.; Karakassis, I.; Tsapakis, M.; Zivanovic, S. Natural vs. Mariculture induced variability in nutrients and plankton in the Eastern Mediterranean. Hydrobiologia 1999, 391, 181–184. [Google Scholar]
- Pitta, P.; Apostolaki, E.T.; Giannoulaki, M.; Karakassis, I. Mesoscale changes in the water column in response to fish farming zones in three coastal areas in the Eastern Mediterranean Sea. Estuar. Coast. Shelf Sci. 2005, 65, 501–512. [Google Scholar] [CrossRef]
- Pitta, P.; Tsapakis, M.; Apostolaki, E.T.; Tsagaraki, T.; Holmer, M.; Karakassis, I. “Ghost nutrients” from fish farms are transferred up the food web by phytoplankton grazers. Mar. Ecol. Prog. Ser. 2009, 374, 1–6. [Google Scholar] [CrossRef]
- Thigstad, T.F.; Krom, M.D.; Mantoura, R.F.C.; Flaten, G.A.G.; Groom, S.; Herut, B.; Kress, N.; Law, C.S.; Pasternak, A.; Pitta, P.; et al. Nature of phosphorous limitation in the ultraoligotrophic eastern Mediterranean. Science 2005, 309, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Karakassis, I.; Tsapakis, M.; Hatziyanni, E.; Papadopoulou, K.N. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J. Mar. Sci. 2000, 57, 1462–1471. [Google Scholar] [CrossRef]
- Aguado-Giménez, F.; García García, B. Assessment of some chemical parameters in marine sediments exposed to offshore cage fish farming influence: A pilot study. Aquaculture 2004, 242, 283–296. [Google Scholar] [CrossRef]
- Kalantzi, I.; Karakassis, I. Benthic impacts of fish farming: Meta-analysis of community and geochemical data. Mar. Pollut. Bull. 2006, 52, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Aguado-Giménez, F.; Marín, A.; Montoya, S.; Marín-Guirao, L.; Piedecausa, M.A.; García García, B. Comparison between some procedures for monitoring offshore cage culture in western Mediterranean Sea: Sampling methods and impact indicators in soft substata. Aquaculture 2007, 271, 357–370. [Google Scholar] [CrossRef]
- Aguado-Giménez, F.; Piedecausa, M.A.; Carrasco, C.; Gutiérrez, J.M.; Aliaga, V.; García García, B. Do benthic biofilters contribute to sustainability and restoration of the benthic environment impacted by offshore cage finfish aquaculture? Mar. Pollut. Bull. 2011, 62, 1714–1724. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.; Montoya, S.; Vita, R.; Marín-Guirao, L.; Lloret, J.; Aguado-Giménez, F. Utility of sea urchin embryo-larval bioassays for assessing the environmental impact of marine fishcage farming. Aquaculture 2007, 271, 286–297. [Google Scholar] [CrossRef]
- Piedecausa, M.A.; Aguado-Giménez, F.; Cerezo Valverde, J.; Hernández, M.D.; García García, B. Simulating the temporal pattern of waste production in farmed gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). Ecol. Model. 2010, 221, 634–640. [Google Scholar] [CrossRef]
- Piedecausa, M.A.; Aguado-Giménez, F.; Cerezo Valverde, J.; Hernádez, M.D.; García García, B. Influence of fish food and faecal pellets on short-term oxygen uptake, ammonium flux and acid volatile sulphide accumulation in sediments impacted by fish farming and non-impacted sediments. Aquac. Res. 2012, 43, 66–74. [Google Scholar] [CrossRef]
- Fernández-González, V.; Aguado-Giménez, F.; Gairin, J.I.; Sánchez-Jerez, P. Exploring patterns of variation in amphipod assemblages at multiple spatial scales: Natural variability versus coastal aquaculture effect. Aquac. Environ. Interact. 2013, 3, 93–105. [Google Scholar] [CrossRef]
- Ayer, N.W.; Tyedmers, P.H. Assesing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- Pelletier, N.; Tyedmers, P.; Sonesson, U.; Scholz, A.; Ziegler, F.; Flysjo, A.; Kruse, S.; Cancino, B.; Silverman, H. Not all salmon are created equal: Life cycle assessment (LCA) of global salmon farming systems. Environ. Sci. Technol. 2009, 43, 8730–8736. [Google Scholar] [CrossRef] [PubMed]
- Samuel-Fitwi, B.; Nagel, F.; Meyer, S.; Schroeder, J.P.; Schulz, C. Comparative life cycle assessment (LCA) of raising rainbow trout (Oncorhynchus mykiss) in different production systems. Aquac. Eng. 2013, 54, 85–92. [Google Scholar] [CrossRef]
- Aubin, J.; Papatryphon, E.; Van der Werf, H.M.G.; Petit, J.; Morvan, Y.M. Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using Life Cycle Assessment. Aquaculture 2006, 261, 1259–1268. [Google Scholar] [CrossRef]
- Bermúdez, L.; García García, B.; Ortega, A. Experiencias de engorde de dorada (Sparus aurata L.) en estanques. Cuad. Marisq. Publicaciones Téc. 1987, 8, 105–116. [Google Scholar]
- Navarro, J.M.; Belmonte, A. Cultivo de seriola en jaulas flotantes en la bahía de “El Hornillo” (Murcia, SE España). Cuad. Marisq. Publicaciones Téc. 1987, 12, 11–16. [Google Scholar]
- International Organization for Standardization. ISO 14040:2006 Environmental Management—Life Cycle Assessment: Principles and Framework; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006 Environmental Management—Life Cycle Assessment: Requirements and Guidelines; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Henriksson, P.J.G.; Guinée, J.B.; Kleijn, R.; de Snoo, G.R. Life cycle assessment of aquaculture systems-a review of methodologies. Int. J. Life Cycle Assess. 2012, 17, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Diana, J.S.; Keoleian, G.A. Role of life cycle assessment in sustainable aquaculture. Rev. Aquac. 2013, 5, 61–71. [Google Scholar] [CrossRef]
- Aubin, J.; Papatryphon, E.; Van der Werf, H.M.G.; Chatzifotis, S. Assesment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J. Clean. Prod. 2009, 17, 354–361. [Google Scholar] [CrossRef]
- Iribarren, D.; Moreira, M.T.; Feijoo, G. Life Cycle Assessment of Aquaculture Feed and Application to the Turbot Sector. Int. J. Env. Res. 2012, 6, 837–848. [Google Scholar]
- Frischknecht, R.; Althaus, H.J.; Bauer, C.; Doka, G.; Heck, T.; Jungbluth, N.; Kellenberger, D.; Nemecek, T. The environmental relevance of capital goods in life cycle assessments of products and services. Int. J. Life Cycle Assess. 2007, 12, 7–17. [Google Scholar]
- García García, J.; Rouco Yañez, A.; García García, B. Directrices generales de diseño de explotaciones de engorde de especies acuícolas en jaulas en mar. Arch. Zootec. 2002, 51, 469–472. [Google Scholar]
- García García, J.; Rouco Yañez, A.; García García, B. Economía de escala en las explotaciones de engorde de dorada (Sparus aurata) en jaulas flotantes en el Mediterráneo. An. Vet. 2005, 21, 69–76. [Google Scholar]
- Gasca-Leyva, E.; León, C.; Hernádez, J.M.; Vergara, J.M. Bioeconomic analysis of production location of sea bream (Sparus aurata) cultivation. Aquaculture 2005, 213, 219–232. [Google Scholar] [CrossRef]
- Merinero, S.; Martínez, S.; Tomás, A.; Jover, M. Análisis económico de alternativas de producción de Dorada en jaulas marinas en el litoral Mediterráneo español. Rev. Aquat. 2005, 23, 1–19. [Google Scholar]
- Aguado-Giménez, F.; García García, B.; Ballester, R.; Vicente, M. Identificación de zonas potencialmente aptas para los cultivos marinos en jaulas flotantes: Una aproximación a la ordenación de la acuicultura en la Región de Murcia. In Proceedings of the VIII Congreso Nacional de Acuicultura: Acuicultura y Desarrollo Sostenible, Santander, Spain, 22–25 May 2001.
- Klein, J.; Geilenkirchen, G.; Hulskotte, J.; Ligterink, N.; Fortuin, P.; Mlnár-in’t Veld, H. Methods for Calculating Transport Emission in The Netherland. 2014. Available online: http://www.pbl.nl/en/publications/methods-for-calculating-transport-emissions-in-the-netherlands-2014 (accessed on 30 May 2016).
- Boissy, J.; Aubin, J.; Drissi, A.; Van der Werf, H.M.G.; Bell, G.J.; Kaushik, S.J. Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture 2011, 321, 61–70. [Google Scholar] [CrossRef]
- Cho, C.Y.; Bureau, D. Development of bioenergetic models and the Fish-PrFEQ software to estimate production feeding ration and waste output in aquaculture. Aquat. Living Resour. 1998, 11, 199–210. [Google Scholar] [CrossRef]
- Leung, K.M.I.; Chu, J.C.W.; Wu, R.S.S. Nitrogen budgets for the aerolated grouper Epinephelus areolatus, cultured under laboratory conditions and in open-sea cages. Mar. Ecol. Prog. Ser. 1999, 186, 271–281. [Google Scholar] [CrossRef]
- Mazón, M.J.; Piedecausa, M.A.; Hernádez, M.D.; García García, B. Evaluation of environmental nitrogen and phosphorus contributions as a result of intensive ongrowing of common octopus (Octopus vulgaris). Aquaculture 2007, 266, 226–235. [Google Scholar] [CrossRef]
- Baez Paleo, J.D.; Villarroel Robinson, M.; Cárdenas, S. Estudio de la digestibilidad de los piensos comerciales desponibles para dorada (Sparus aurata). In Proceedings of the XII Congreso Nacional de Acuicultura: Con la Acuicultura Alimentamos Tu Salud, Madrid, Spain, 24–26 November 2009; Isabel López López: Madrid, Spain, 2009; pp. 158–159. [Google Scholar]
- Pelletier, N.; Tyedmers, P. Feeding farmed salmon: Is organic better? Aquaculture 2007, 272, 399–416. [Google Scholar] [CrossRef]
- Roque d’Orbcastel, E.; Blancheton, J.P.; Aubin, J. Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using Life Cycle Assessment. Aquac. Eng. 2009, 40, 113–119. [Google Scholar] [CrossRef]
- Iribarren, D.; Moreira, M.T.; Feijoo, G. Life Cycle Assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain). Resour. Conserv. Recycl. 2010, 55, 106–117. [Google Scholar] [CrossRef]
- Jerbi, M.A.; Aubin, J.; Achour, L.; Kacem, A. Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquac. Eng. 2012, 46, 1–9. [Google Scholar] [CrossRef]
- Avadí, A.; Fréon, P. Life cycle assessment of fisheries: A review for fisheries scientists and managers. Fish. Res. 2013, 143, 21–38. [Google Scholar] [CrossRef]
- Cooper, J.; Diesburg, S.; Babej, A.; Noon, M.; Kahn, E.; Puettmann, M.; Colt, J. Life Cycle Assessment of products from Alaskan salmon processing wastes: Implication of coproduction, intermittent landings, and storage time. Fish. Res. 2014, 151, 26–38. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Meyer, S.; Reckmann, K.; Schroeder, J.P. Aspiring for environmentally conscious aquafeed: comparative LCA of aquafeed manufacturing using different protein sources. J. Clean. Prod. 2013, 52, 225–233. [Google Scholar] [CrossRef]
- Tyedmers, P.H. Salmon and Sustainability: The Biophysical Cost of Producing Salmon through the Comercial Salmon Fishery and the Intensive Salmon Culture Industry. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2000. [Google Scholar]
- Ang, K.P.; Petrell, R.J. Pellet watage, and subsurface and surface feeding behaviours associated with different feeding systems in sea cage farming of salmonids. Aquac. Eng. 1998, 18, 95–115. [Google Scholar] [CrossRef]
- Noble, C.; Kadris, S.; Mitchell, D.F.; Huntingford, F.A. Influence of feeding regime on intraspecific competition, fin damage and growth in 1+ Atlantic salmo parr (Salmo salar L.) held in freshwater production cages. Aquac. Res. 2007, 38, 1137–1143. [Google Scholar] [CrossRef]
- Noble, C.; Mizusawa, K.; Suzuki, K.; Tabata, M. The effect of differing self-feeding regimes on the growth, behaviour and fin damage of rainbow trout held in groups. Aquaculture 2007, 264, 214–222. [Google Scholar] [CrossRef]
- Ballester-Molto, M.; García García, B.; García García, J.; Cerezo Valverde, J.; Aguado-Giménez, F. Controlling feed losses by chewing in gilthead sea bream (Sparus aurata) ongrowing may improve the environmental sustainability of the aquacultural activity. Aquaculture 2016, 464, 111–116. [Google Scholar] [CrossRef]
- Navas, J.I.; Cordero, M.L.; Cárdenas, S. El control de las pérdidas de alimento por la masticación en engorde de dorada (Sparus aurata) mediante regímenes alternativos basados en la gestión del tamaño de los pellets puede mejorar la rentabilidad del cultivo. In Proceedings of the XV Congreso Nacional y I Congreso Ibérico de Acuicultura: Acuicultura, Cultivando el Futuro, Huelva, Spain, 13–16 October 2015; IFAPA y SEA: Huelva, Spain, 2015; pp. 622–623. [Google Scholar]
- Gowen, R.; Bradbury, N. The ecological impact of salmon farming in coastal waters: A review. Oceanogr. Mar. Biol. Annu. Rev. 1987, 25, 563–575. [Google Scholar]
- Piedecausa, M.A.; Aguado-Giménez, F.; García García, B.; Ballester, G.; Telfer, T. Settling velocity and total ammonia nitrogen leaching from commercial feed and faecal pellets of gilthead seabream (Sparus aurata L. 1758) and seabass (Dicentrarchus labrax L. 1758). Aquac. Res. 2009, 40, 1703–1714. [Google Scholar] [CrossRef]
- Pereira, T.G.; Oliva-Teles, A. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquac. Res. 2003, 34, 1111–1117. [Google Scholar] [CrossRef]
- Robaina, L.; Moyano, F.J.; Izquierdo, M.S.; Socorro, J.; Vergara, J.M.; Montero, D. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): Nutritional and histological implications. Aquaculture 1997, 157, 347–359. [Google Scholar] [CrossRef]
Materials | FLOATING RING | NET | MOORING | Total |
---|---|---|---|---|
Polyethylene | 111,097.11 | 3718.00 | 114,815.11 | |
Polystyrene | 1604.44 | 1604.44 | ||
Nylon | 13,738.10 | 13,738.10 | ||
Polypropylene | 1330.00 | 14,328.30 | 15,658.29 | |
Polyurethane | 473.00 | 473.00 | ||
Polyvinylchloride | 73.36 | 73.36 | ||
Cast iron | 28,000.00 | 28,000.00 | ||
Steel, chromium steel | 6682.70 | 6682.70 | ||
Steel, low-alloyed | 22,912.00 | 22,912.00 | ||
Concrete block | 16,000.00 | 16,000.00 |
Input FACILITIES (kg·t−1) | |||
---|---|---|---|
Materials | FLOATING RING | NET | MOORING |
Polyethylene | 16.6646 | 0.5577 | |
Polystyrene | 0.2407 | ||
Nylon | 4.1214 | ||
Polypropylene | 0.3990 | 4.2985 | |
Polyurethane | 0.0710 | ||
Polyvinylchloride | 0.0220 | ||
Cast iron | 1.6800 | ||
Steel, chromium steel | 2.0048 | ||
Steel, low-alloyed | 1.3747 | ||
Concrete block | 0.9600 | ||
Transport (kg km) | 500 | 500 | 500 |
Input FEED (RAW MATERIALS, 1 t feed (kg·t−1 feed) FCR: 2 | Output FUEL (kg·t−1); emissions to air; emissions factors [51] | ||
Wheat | 140 | CO2 | 1409.697 |
Wheat gluten meal | 130 | CO | 3.555 |
Fish meal | 200 | NOx | 26.216 |
Soybean meal | 220 | NMVOC | 1.155 |
Corn gluten meal | 100 | CH4 | 0.049 |
Fish oil | 80 | VOC | 1.200 |
Rapeseed oil | 50 | PM10 | 0.622 |
Soybean oil | 50 | SO2 | 2.444 |
Vitamins and minerals | 30 | N2O | 0.036 |
Feed plant transport (t·km) | 500 | NH3 | 0.004 |
Fish farm transport (t·km) | 500 | ||
Input FEED (MANUFACTURING) [44] | Output FEED (MANUFACTURING) [44] | ||
Input FUEL (kg·t−1) | Output GROWTH (kg·t−1); Emissions to Sea Water | ||
Diesel | 444.33 | Total N | 119.59 |
Lubricating oil | 1.26 | Total P | 5.93 |
PEIC | Equivalency Unit | Mean | SD | CV (%) | 95% CI | SEM |
---|---|---|---|---|---|---|
AD | kg Sb-eq | 0.00165 | 0.00021 | 12.90 | 0.00125–0.00210 | 0.000067 |
GW | kg CO2-eq | 7124 | 180 | 2.53 | 6796–7487 | 5.69 |
OLD | kg CFC-11-eq | 0.00130 | 0.00035 | 27.56 | 0.00089–0.00217 | 0.000011 |
PO | kg C2H4-eq | 1.12 | 0.08 | 7.43 | 1.01–1.33 | 0.003 |
A | kg SO2-eq | 38.46 | 2.15 | 5.60 | 35.64–43.82 | 0.07 |
E | kg PO4-eq | 81.79 | 0.36 | 0.44 | 81.18–82.64 | 0.01 |
CED | GJ | 98.12 | 11.25 | 11.47 | 79.51–121.98 | 0.36 |
Aquaculture System | Species | FCR | Output N (kg·t−1) | Output P (kg·t−1) | A (kg SO2-eq) | E (kg PO4-eq) | GW (kg CO2-eq) | Ref. |
---|---|---|---|---|---|---|---|---|
Offshore cage | (1) | |||||||
This study | ||||||||
BOFF | 2.0 | 119.3 | 5.9 | 38.5 | 81.8 | 7124 | ||
Alternative 1 | 1.7 | 97.7 | 3.2 | 35.9 | 62.9 | 6346 | ||
Alternative 2 | 1.7 | 97.7 | 3.2 | 29.6 | 61.6 | 5769 | ||
Alternative 3 | 2.0 | 119.3 | 5.9 | 39.2 | 83.4 | 5595 | ||
Alternative 4 | 1.7 | 97.7 | 3.2 | 30.3 | 63.0 | 4484 | ||
Marine system | ||||||||
Sea cage | (2) | 1.8 | 101.7 | 16.7 | 25.3 | 109.0 | 3600 | [43] |
Net-pen | (3) | 1.3 | 31.3 | 4.9 | 17.9 | 35.3 | 2073 | [32] |
Net-pen, Norway | (3) | 1.1 | 41.1 | 5.2 | 17.1 | 41.0 | 1790 | [33] |
Net-pen, UK | (3) | 1.3 | 58.7 | 8.5 | 29.7 | 62.7 | 3270 | [33] |
Net-pen, Canada | (3) | 1.3 | 51.4 | 13.6 | 28.1 | 74.9 | 2370 | [33] |
Net-pen, Chile | (3) | 1.5 | 71.3 | 12.6 | 20.4 | 51.3 | 2300 | [33] |
Floating bag | (3) | 1.2 | 28.4 | 4.4 | 18.0 | 31.9 | 2250 | [32] |
Land system | ||||||||
Raceway system | (2) | 1.8 | 107.6 | 15.0 | 54.0 | 180.0 | 11,087 | [60] |
Cascade system | (2) | 2.1 | 111.6 | 18.1 | 70.0 | 215.0 | 17,449 | [60] |
Flow-through tank | (3) | 1.2 | 26.0 | 4.1 | 33.3 | 31.0 | 5410 | [32] |
Extensive system | (4) | 1.2 | 65.0 | 10.0 | 10.7 | 60.4 | 2239 | [34] |
Intensive system | (4) | 0.9 | 65.0 | 10.0 | 10.8 | 60.0 | 3561 | [34] |
Flow-through tank | (4) | 1.2 | 65.0 | 10.0 | 19.2 | 28.5 | 2020 | [43] |
Recirculating | (5) | 1.2 | 81.5 | 10.6 | 48.3 | 77.0 | 6017 | [35] |
Recirculating (*) | (6) | 1.4 | 0.0 | 0.0 | 63.4 | 11.6 | 10,300 | [32] |
Recirculating (*) | (4) | 0.9 | 0.0 | 0.0 | 40.7 | 4.0 | 13,622 | [34] |
Alternatives | INSTALLATION | FUEL | GROWTH | FEED | GRI |
---|---|---|---|---|---|
BOFF | 4.96 | 35.23 | 11.94 | 47.87 | |
Alternative 1 | 5.45 | 38.32 | 11.55 | 44.69 | 10.24 |
Alternative 2 | 5.87 | 31.44 | 11.78 | 50.91 | 20.81 |
Alternative 3 | 5.92 | 38.76 | 11.72 | 43.61 | 9.15 |
Alternative 4 | 6.97 | 34.74 | 11.53 | 46.75 | 28.59 |
Raw Materials (kg·t−1) | Standard Feed | Alternative Feed |
---|---|---|
Whole Wheat | 140 | 140 |
Soybean meal | 220 | |
Wheat gluten | 130 | 150 |
Corn gluten meal | 100 | 400 |
Fish meal | 200 | 100 |
Fish oil | 80 | 80 |
Soybean oil | 50 | 50 |
Rapeseed oil | 50 | 50 |
Nutritional composition (kg·t−1) | ||
Protein | 426.55 | 453.15 |
Lipid | 220.20 | 212.60 |
Fiber | 18.57 | 9.97 |
Starch | 131.20 | 165.10 |
Ash | 39.91 | 21.54 |
Gross energy (MJ·kg−1) | 22.12 | 22.98 |
Protein/Energy | 19.28 | 19.72 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García García, B.; Rosique Jiménez, C.; Aguado-Giménez, F.; García García, J. Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms. Sustainability 2016, 8, 1228. https://doi.org/10.3390/su8121228
García García B, Rosique Jiménez C, Aguado-Giménez F, García García J. Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms. Sustainability. 2016; 8(12):1228. https://doi.org/10.3390/su8121228
Chicago/Turabian StyleGarcía García, Benjamín, Caridad Rosique Jiménez, Felipe Aguado-Giménez, and José García García. 2016. "Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms" Sustainability 8, no. 12: 1228. https://doi.org/10.3390/su8121228
APA StyleGarcía García, B., Rosique Jiménez, C., Aguado-Giménez, F., & García García, J. (2016). Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms. Sustainability, 8(12), 1228. https://doi.org/10.3390/su8121228