Diversification, Yield and a New Agricultural Revolution: Problems and Prospects
Abstract
:1. Introduction
2. Is There a Yield Gap?
2.1. Organic
2.2. Conservation Agriculture
3. When Is Yield Virtually Irrelevant?
3.1. Feeding the World
3.2. Determining the Amount of Land in Production
4. When Is Yield Relevant?
4.1. Transitioning from Industrial
4.2. Economic Viability
4.3. Yield Resilience
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kremen, C.; Iles, A.; Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Montgomery, D.R. Dirt: The Erosion of Civilizations; University of California Press: Oakland, CA, USA, 2012. [Google Scholar]
- Gill, R.J.; Ramos-Rodriguez, O.; Raine, N.E. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 2012, 491, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Marks, A.R.; Bradman, A.; Harley, K.; Barr, D.B.; Johnson, C.; Morga, N.; Jewell, N.P. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ. Health Perspect. 2007, 115, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.B.; Khoury, V.; Narayan, A.; Nazir, M.; Park, A.; Brown, T.; Adame, L.; Chan, E.; Buchholz, D.; Stueve, T.; et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc. Natl. Acad. Sci. USA 2010, 107, 4612–4617. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.J.; Peterson, G.D.; Bennett, E.M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 2008, 23, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Wilcove, D.S.; Koh, L.P. Addressing the threats to biodiversity from oil-palm agriculture. Biodivers. Conserv. 2010, 19, 999–1007. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Grosso, S.J.D.; Cavigelli, M.A. Climate stabilization wedges revisited: Can agricultural production and greenhouse-gas reduction goals be accomplished? Front. Ecol. Environ. 2012, 10, 571–578. [Google Scholar] [CrossRef]
- Gross, M. EU ban puts spotlight on complex effects of neonicotinoids. Curr. Biol. 2013, 23, R462–R464. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp-Hearne, C.; Peterson, G.D.; Tengö, M.; Bennett, E.M.; Holland, T.; Benessaiah, K.; MacDonald, G.K.; Pfeifer, L. Untangling the environmentalist’s paradox: Why is human well-being increasing as ecosystem services degrade? BioScience 2010, 60, 576–589. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, B.D. IAASTD International Assessment of Agricultural Knowledge, Science and Technology for Development: Global Report. Available online: http://www.fao.org/fileadmin/templates/est/Investment/Agriculture_at_a_Crossroads_Global_Report_IAASTD.pdf (accessed on 28 October 2016).
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, P.R.; Harte, J. Food security requires a new revolution. Int. J. Environ. Stud. 2015, 72, 908–920. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Harte, J. Opinion: To feed the world in 2050 will require a global revolution. Proc. Natl. Acad. Sci. USA 2015, 112, 14743–14744. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Ehrlich, A.H. Can a collapse of global civilization be avoided? Proc. R. Soc. Lond. B 2013, 280, 20122845. [Google Scholar] [CrossRef] [PubMed]
- MacRae, R.J.; Frick, B.; Martin, R.C. Economic and social impacts of organic production systems. Can. J. Plant Sci. 2007, 87, 1037–1044. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.; Jackson-Smith, D.; Batie, S.; Harwood, R.; Kornegay, J.L.; Bucks, D.; Flora, C.; Hanson, J.; Jury, W.; Meyer, D.; et al. Transforming US agriculture. Science 2011, 332, 670–671. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.H.; MacRae, R.; Martin, R.C. The carbon and global warming potential impacts of organic farming: Does it have a significant role in an energy constrained world? Sustainability 2011, 3, 322–362. [Google Scholar] [CrossRef]
- Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 2012, 7, e47149. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Hole, D.; Perkins, A.; Wilson, J.; Alexander, I.; Grice, P.; Evans, A. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Lotter, D.; Seidel, R.; Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 2003, 18, 146–154. [Google Scholar] [CrossRef]
- Nissen, T.M.; Wander, M.M. Management and soil-quality effects on fertilizer-use efficiency and leaching. Soil Sci. Am. J. 2003, 67, 1524–1532. [Google Scholar] [CrossRef]
- Tuck, S.L.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.A.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Daily, G.C.; Ehrlich, P.R.; Michener, C.D. Economic value of tropical forest to coffee production. Proc. Natl. Acad. Sci. USA 2004, 101, 12579–12582. [Google Scholar] [CrossRef] [PubMed]
- Lockeretz, W. Organic Farming: An International History; Centre for Agriculture and Biosciences International (CABI): Wallingford, UK, 2007. [Google Scholar]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Guthman, J. Raising organic: An agro-ecological assessment of grower practices in California. Agric. Hum. Values 2000, 17, 257–266. [Google Scholar] [CrossRef]
- Farooq, M.; Siddique, K.H. Conservation Agriculture; Springer: Chem, Switzerland, 2015. [Google Scholar]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Friedric, T.; Derpsch, R.; Kassam, A. Global overview of the spread of Conservation Agriculture. J. Agric. Sci. Technol. 2012, 6, 1–11. [Google Scholar]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Willer, H.; Lernoud, J. The World of Organic Agriculture: Statistics and Emerging Trends 2011; International Federation of Organic Agriculture Movements (IFOAM): Bonn, Germany; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2016. [Google Scholar]
- Haggblade, S.; Tembo, G. Conservation Farming in Zambia; African Conservation Tillage Network: Nairobi, Kenya, 2003. [Google Scholar]
- Garbach, K.; Milder, J.C.; DeClerck, F.A.; de Wit, M.M.; Driscoll, L.; Gemmill-Herren, B. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 2016. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. Lond. B 2015, 282, 20141396. [Google Scholar] [CrossRef]
- Van Bueren, E.L.; Jones, S.; Tamm, L.; Murphy, K.; Myers, J.; Leifert, C.; Messmer, M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 2007, 102, 172–177. [Google Scholar] [CrossRef]
- Ponisio, L. Meta-Analysis. 2016. Available online: https://github.com/lponisio/meta-analysis.git (accessed on 28 October 2016).
- Gentry, L.F.; Ruffo, M.L.; Below, F.E. Identifying factors controlling the continuous corn yield penalty. Agron. J. 2013, 105, 295–303. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of crop diversity on agroecosystem function: Crop yield response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci. 2008, 48, 331–342. [Google Scholar] [CrossRef]
- Grant, C.A.; Peterson, G.A.; Campbell, C.A. Nutrient considerations for diversified cropping systems in the northern Great Plains. Agron. J. 2002, 94, 186–198. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Li, C.; Drinkwater, L.E. Application of the DNDC model to tile-drained Illinois agroecosystems: Model comparison of conventional and diversified rotations. Nutr. Cycl. Agroecosyst. 2007, 78, 65–81. [Google Scholar] [CrossRef]
- Young, D.L.; Kwon, T.J.; Young, F.L. Profit and risk for integrated conservation farming systems in the Palouse. J. Soil Water Conserv. 1994, 49, 601–606. [Google Scholar]
- Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; Penning de Vries, F.W.; Morison, J.I. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 2006, 40, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Ahmad, J.N. Insect pest management in conservation agriculture. In Conservation Agriculture; Farooq, M., Siddique, K.H., Eds.; Springer: Cham, Switzerland, 2015; pp. 133–155. [Google Scholar]
- Khan, Z.; Midega, C.; Pittchar, J.; Pickett, J.; Bruce, T. Push—pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa: UK government’s Foresight Food and Farming Futures project. Int. J. Agric. Sustain. 2011, 9, 162–170. [Google Scholar] [CrossRef]
- Khan, Z.; Ampong-Nyarko, K.; Chiliswa, P.; Hassanali, A.; Kimani, S.; Lwande, W.; Overholt, W.; Picketta, J.; Smart, L.; Woodcock, C. Intercropping increases parasitism of pests. Nature 1997, 388, 631–632. [Google Scholar] [CrossRef]
- Khan, Z.R.; Pickett, J.A. The ‘push–pull’ strategy for stemborer management: A case study in exploiting biodiversity and chemical ecology. In Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods; Cornell University Press: Ithaca, NY, USA, 2004; pp. 155–164. [Google Scholar]
- Khan, Z.R.; Pickett, J.A.; van den Berg, J.; Wadhams, L.J.; Woodcock, C.M. Exploiting chemical ecology and species diversity: Stem borer and striga control for maize and sorghum in Africa. Pest Manag. Sci. 2000, 56, 957–962. [Google Scholar] [CrossRef]
- Holt-Giménez, E.; Shattuck, A.; Altieri, M.; Herren, H.; Gliessman, S. We already grow enough food for 10 billion people… and still can’t end hunger. J. Sustain. Agric. 2012, 36, 595–598. [Google Scholar] [CrossRef]
- Smil, V. Feeding the world: How much more rice do we need. In Rice Is Life: Scientific Perspectives for the 21st Century; International Rice Research Institute: Manila, Philippines, 2005; pp. 21–23. [Google Scholar]
- Tomlinson, I. Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. J. Rural Stud. 2013, 29, 81–90. [Google Scholar] [CrossRef]
- Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76. [Google Scholar] [CrossRef] [PubMed]
- Ponisio, L.C.; Kremen, C. System-level approach needed to evaluate the transition to more sustainable agriculture. Proc. R. Soc. B 2016, 283, 20152913. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Improving efficiency and reducing waste in our food system. Environ. Sci. 2004, 1, 17–26. [Google Scholar] [CrossRef]
- Ramakrishnan, U. Prevalence of micronutrient malnutrition worldwide. Nutr. Rev. 2002, 60, S46–S52. [Google Scholar] [CrossRef] [PubMed]
- Patel, R. Stuffed and Starved; PM Press: Oakland, CA, USA, 2010. [Google Scholar]
- McMichael, P. A food regime analysis of the ‘world food crisis’. Agric. Hum. Values 2009, 26, 281–295. [Google Scholar] [CrossRef]
- Magdoff, F.; Foster, J.B.; Buttel, F.H. Hungry for Profit: The Agribusiness Threat to Farmers, Food, and the Environment; New York University Press: New York, NY, USA, 2000. [Google Scholar]
- Weis, A.J. The Global Food Economy: The Battle for the Future of Farming; Zed Books: London, UK, 2007. [Google Scholar]
- Alkon, A.H.; Agyeman, J. Cultivating Food Justice: Race, Class, and Sustainability; Massachusetts Institute of Technology (MIT) Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Smith, L.C.; Haddad, L. Reducing child undernutrition: Past drivers and priorities for the post-MDG Era. World Dev. 2015, 68, 180–204. [Google Scholar] [CrossRef]
- Hall, K.D.; Guo, J.; Dore, M.; Chow, C.C. The progressive increase of food waste in America and its environmental impact. PLoS ONE 2009, 4, e7940. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T. Waste: Uncovering the Global Food Scandal; W. W. Norton & Company: New York, NY, USA, 2009. [Google Scholar]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.J.; LaValle, L.A. Food security and biodiversity: can we have both? An agroecological analysis. Agric. Hum. Values 2011, 28, 3–26. [Google Scholar] [CrossRef]
- Vandermeer, J.; Perfecto, I. The agricultural matrix and a future paradigm for conservation. Conserv. Biol. 2007, 21, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Meyfroidt, P.; Carlson, K.M.; Fagan, M.E.; Gutiérrez-Vélez, V.H.; Macedo, M.N.; Curran, L.M.; DeFries, R.S.; Dyer, G.A.; Gibbs, H.K.; Lambin, E.F.; et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 2014, 9, 074012. [Google Scholar] [CrossRef]
- Oldekop, J.; Holmes, G.; Harris, W.; Evans, K. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 2016, 30, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.; Miller, C.; Newell, B.; Dunlop, M.; Gordon, I.J. Why biodiversity declines as protected areas increase: The effect of the power of governance regimes on sustainable landscapes. Sustain. Sci. 2015, 10, 357–369. [Google Scholar] [CrossRef]
- Romanelli, C.; Cooper, D.; Campbell-Lendrum, D.; Maiero, M.; Karesh, W.; Hunter, D.; Golden, C. Connecting Global Priorities: Biodiversity and Human Health: A State of Knowledge Review; Technical Report; World Health Organistion, Secretariat of the UN Convention on Biological Diversity: Geneva, Switzerland, 2015. [Google Scholar]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Brashares, J.S.; Golden, C.D.; Weinbaum, K.Z.; Barrett, C.B.; Okello, G.V. Economic and geographic drivers of wildlife consumption in rural Africa. Proc. Natl. Acad. Sci. USA 2011, 108, 13931–13936. [Google Scholar] [CrossRef] [PubMed]
- Martini, E.A.; Buyer, J.S.; Bryant, D.C.; Hartz, T.K.; Denison, R.F. Yield increases during the organic transition: Improving soil quality or increasing experience? Field Crops Res. 2004, 86, 255–266. [Google Scholar] [CrossRef]
- Lohr, L.; Salomonsson, L. Conversion subsidies for organic production: Results from Sweden and lessons for the United States. Agric. Econ. 2000, 22, 133–146. [Google Scholar] [CrossRef]
- Padel, S.; Lampkin, N. The Economics of Organic Farming: An International Perspective; Centre for Agriculture and Bioscience International: Wallingford, UK, 1994. [Google Scholar]
- Sellen, D.; Tolman, J.H.; McLeod, D.G.R.; Weersink, A.; Yiridoe, E.K. A comparison of financial returns during early transition from conventional to organic vegetable production. J. Veg. Crop Prod. 1996, 1, 11–39. [Google Scholar] [CrossRef]
- Archer, D.W.; Jaradat, A.A.; Johnson, J.M.; Weyers, S.L.; Gesch, R.W.; Forcella, F.; Kludze, H.K. Crop productivity and economics during the transition to alternative cropping systems. Agron. J. 2007, 99, 1538–1547. [Google Scholar] [CrossRef]
- Russo, V.; Taylor, M. Soil amendments in transition to organic vegetable production with comparison to conventional methods: Yields and economics. HortScience 2006, 41, 1576–1583. [Google Scholar]
- Delate, K.; Cambardella, C.A. Agroecosystem performance during transition to certified organic grain production. Agron. J. 2004, 96, 1288–1298. [Google Scholar] [CrossRef]
- Gopinath, K.; Saha, S.; Mina, B.; Pande, H.; Kundu, S.; Gupta, H. Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutr. Cycl. Agroecosyst. 2008, 82, 51–60. [Google Scholar] [CrossRef]
- Kuminoff, N.V.; Wossink, A. Why isn’t more US farmland organic? J. Agric. Econ. 2010, 61, 240–258. [Google Scholar] [CrossRef]
- Beckett, J.; Galt, R. Land trusts and beginning farmers’ access to land: Exploring the relationships in coastal California. J. Agric. Food Syst. Commun. Dev. 2014, 4, 1–17. [Google Scholar] [CrossRef]
- Calo, A.; de Master, K.T. After the incubator: Factors impeding land access along the path from farmworker to proprietor. J. Agric. Food Syst. Commun. Dev. 2016, 6, 111–127. [Google Scholar] [CrossRef]
- Strom, S. Paying farmers to go organic, even before the crops come in. New York Times, 15 July 2016. [Google Scholar]
- Buck, D.; Getz, C.; Guthman, J. From farm to table: The organic vegetable commodity chain of Northern California. Sociol. Rural. 1997, 37, 3–20. [Google Scholar] [CrossRef]
- Guthman, J. Agrarian Dreams: The Paradox of Organic Farming in California; University of California Press: Oakland, CA, USA, 2014. [Google Scholar]
- Rehber, E. Vertical Integration in Agriculture and Contract Farming; Food Marketing Policy Center, University of Connecticut: Storrs, CT, USA, 1998. [Google Scholar]
- Heffernan, W.D. Concentration of ownership and control in agriculture. In Hungry for Profit: The Agribusiness Threat to Farmers, Food, and the Environment; New York University Press: New York, NY, USA, 2000; pp. 61–76. [Google Scholar]
- Kautsky, K. The Agrarian Question; Zwan Press: London, UK, 1988. [Google Scholar]
- Lechenet, M.; Bretagnolle, V.; Bockstaller, C.; Boissinot, F.; Petit, M.S.; Petit, S.; Munier-Jolain, N.M. Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PLoS ONE 2014, 9, e97922. [Google Scholar] [CrossRef] [PubMed]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
- Knowler, D. Farmer adoption of conservation agriculture: A review and update. In Conservation Agriculture; Farooq, M., Siddique, K.H., Eds.; Springer: Cham, Switzerland, 2015; pp. 621–642. [Google Scholar]
- Linden, D.R.; Clapp, C.E.; Dowdy, R.H. Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res. 2000, 56, 167–174. [Google Scholar] [CrossRef]
- Romero-Perezgrovas, R.; Verhulst, N.; de La Rosa, D.; Hernández, V.; Maertens, M.; Deckers, J.; Govaerts, B. Effects of tillage and crop residue management on maize yields and net returns in the Central Mexican highlands under drought conditions. Pedosphere 2014, 24, 476–486. [Google Scholar] [CrossRef]
- Sayre, K.; Govaerts, B. The principles of conservation agriculture. In Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation; International Maize and Wheat Improvement Center (CIMMYT): Texcoco, Mexico, 2012; pp. 164–174. [Google Scholar]
- Sidhu, R.; Vatta, K.; Dhaliwal, H. Conservation agriculture in punjab—Economic implications of technologies and practices. Indian J. Agric. Econ. 2010, 65, 413–427. [Google Scholar]
- Pisante, M.; Stagnari, F.; Acutis, M.; Bindi, M.; Brilli, L.; Di Stefano, V.; Carozzi, M. Conservation agriculture and climate change. In Conservation Agriculture; Farooq, M., Siddique, K.H., Eds.; Springer: Cham, Switzerland, 2015; pp. 579–620. [Google Scholar]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef]
- Abson, D.J.; Fraser, E.D.; Benton, T.G. Landscape diversity and the resilience of agricultural returns: A portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2013, 2, 2. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Gaudin, A.C.; Tolhurst, T.N.; Ker, A.P.; Janovicek, K.; Tortora, C.; Martin, R.C.; Deen, W. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 2015, 10, e0113261. [Google Scholar] [CrossRef] [PubMed]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef] [Green Version]
- European Commission—Directorate General for Agriculture and Rural Development. Agri-Environment Measures-Overview on General Principles; Directorate General for Agriculture and Rural Development: Brussels, Belgium, 2005. [Google Scholar]
- European Commission. Overview of Cap Reform 2014–2020—Agricultural Policy Perspectives Brief; European Union: Brussels, Belgium, 2013. [Google Scholar]
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proc. R. Soc. Lond. B 2011, 278, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Matthews, A. Greening agricultural payments in the EU’s common agricultural policy. Bio-Based Appl. Econ. 2013, 2, 1–27. [Google Scholar]
- DeLonge, M.S.; Miles, A.; Carlisle, L. Investing in the transition to sustainable agriculture. Environ. Sci. Policy 2016, 55, 266–273. [Google Scholar] [CrossRef]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
- Pretty, J.N.; Hine, R. Reducing Food Poverty with Sustainable Agriculture: A Summary of New Evidence; University of Essex Colchester: Colchester, UK, 2001. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponisio, L.C.; Ehrlich, P.R. Diversification, Yield and a New Agricultural Revolution: Problems and Prospects. Sustainability 2016, 8, 1118. https://doi.org/10.3390/su8111118
Ponisio LC, Ehrlich PR. Diversification, Yield and a New Agricultural Revolution: Problems and Prospects. Sustainability. 2016; 8(11):1118. https://doi.org/10.3390/su8111118
Chicago/Turabian StylePonisio, Lauren C., and Paul R. Ehrlich. 2016. "Diversification, Yield and a New Agricultural Revolution: Problems and Prospects" Sustainability 8, no. 11: 1118. https://doi.org/10.3390/su8111118
APA StylePonisio, L. C., & Ehrlich, P. R. (2016). Diversification, Yield and a New Agricultural Revolution: Problems and Prospects. Sustainability, 8(11), 1118. https://doi.org/10.3390/su8111118