Analysis and Planning of Ecological Networks Based on Kernel Density Estimations for the Beijing-Tianjin-Hebei Region in Northern China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Pre-Processing
3. Methods
3.1. KDE Method
3.1.1. Grid Size
3.1.2. Bandwidth
3.2. Integrated Density Index
3.3. Natural Breaks Classification
4. Results
4.1. Identification of Ecological Network Elements in the BTH Region
4.2. Spatial Configuration Analysis of the Ecological Networks in the BTH Region
4.3. Suggestions for the Protection of Ecological Networks
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bakker, M.M.; Opdam, P.F.M.; Jongman, R.H.G.; Brink, A.V.D. Model explorations of ecological network performance under conditions of global change. Landsc. Ecol. 2015, 30, 763–770. [Google Scholar] [CrossRef]
- Gaaff, A.; Reinhard, S. Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning. Ecol. Econ. 2012, 73, 66–74. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Opdam, P.; Steingröver, E.; Rooij, S.V. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Pungetti, G.P. Ecological Networks and Greenways: Concept, Design, Implementation; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Mossman, H.L.; Panter, C.J.; Dolman, P.M. Modelling biodiversity distribution in agricultural landscapes to support ecological network planning. Landsc. Urban Plan. 2015, 141, 59–67. [Google Scholar] [CrossRef] [Green Version]
- De Montis, A.; Caschili, S.; Mulas, M.; Modica, G.; Ganciu, A.; Bardi, A.; Ledda, A.; Dessena, L.; Laudari, L.; Fichera, C.R. Urban–rural ecological networks for landscape planning. Land Use Policy 2016, 50, 312–327. [Google Scholar] [CrossRef]
- Damschen, E.I.; Haddad, N.M.; Orrock, J.L.; Tewksbury, J.J.; Levey, D.J. Corridors increase plant species richness at large scales. Science 2006, 313, 1284–1286. [Google Scholar] [CrossRef] [PubMed]
- Hagen, M.; Kissling, W.D.; Rasmussen, C.; de Aguiar, M.A.M.; Brown, L.E.; Carstensen, D.W.; Alves-Dos-Santos, I.; Dupont, Y.L.; Edwards, F.K.; Genini, J.; et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 2012, 46, 89–210. [Google Scholar]
- Gilbert-Norton, L.; Wilson, R.; Stevens, J.R.; Beard, K.H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 2010, 24, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Paetkau, D.; Waits, L.P.; Clarkson, P.L.; Craighead, L.; Vyse, E.; Ward, R.; Strobeck, C. Variation in genetic diversity across the range of North American brown bears. Conserv. Biol. 1998, 12, 418–429. [Google Scholar] [CrossRef]
- Steiner, F. Landscape ecological urbanism: Origins and trajectories. Landsc. Urban Plan. 2011, 100, 333–337. [Google Scholar] [CrossRef]
- Fichera, C.R.; Gianoglio, R.; Laudari, L.; Modica, G. Application, validation and comparison in different geographical contexts of an integrated model for the design of ecological networks. J. Agric. Eng. 2015, 46, 52–61. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S. Landscape ecological risk responses to land use change in the Luanhe River basin, China. Sustainability 2015, 7, 16631–16652. [Google Scholar] [CrossRef]
- Wang, S.J.; Ma, H.; Zhao, Y.B. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing-Tianjin-Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.; Chen, W.; Yenneti, K. Urban land expansion and structural change in the Yangtze River Delta, China. Sustainability 2015, 7, 10281–10307. [Google Scholar] [CrossRef]
- Gouldson. Europe’s environment: The dobris assessment. Eur. Environ. 1996, 6, 30. [Google Scholar]
- Vimal, R.; Mathevet, R.; Thompson, J.D. The changing landscape of ecological networks. J. Nat. Conserv. 2012, 20, 49–55. [Google Scholar] [CrossRef]
- Wen, K.; Zhu, E.J. Annual Report on Beijing-Tianjin-Hebei Metropolitan Region Development; Social Sciences Academic Press: Beijing, China, 2013. [Google Scholar]
- Yu, K.J.; Wang, S.S.; Li, D.H. Regional Ecological Security Patterns: The Beijing Case; China Building Industry Press: Beijing, China, 2012. [Google Scholar]
- Sun, W.B.; Peng, J. Study on measurement of eco-efficiency of Beijing-Tianjin-Hebei metropolitan region. In Proceedings of the 20th International Conference on Industrial Engineering and Engineering Management, Baotou, China, 17–18 August 2013; Qi, E., Shen, J., Dou, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 159–166. [Google Scholar]
- Tang, B.; Hu, Y.; Li, H.; Yang, D.; Liu, J. Research on comprehensive carrying capacity of Beijing-Tianjin-Hebei region based on state-space method. Nat. Hazards 2016, 84, 1–16. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B.; Zheng, H.; Zhao, J. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China. J. Environ. Sci. 2015, 30, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.; Men, M.; Hao, X. Assessing method for regional ecological connectivity and its application based on GIS. Trans. Chin. Soc. Agric. Eng. 2014, 30, 218–226. (In Chinese) [Google Scholar]
- Bennett, G.; Wit, P. The Development and Application of Ecological Networks. A Review of Proposals, Plans and Programmes; AIDEnvironment: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Boitani, L.; Falcucci, A.; Maiorano, L.; Rondinini, C. Ecological networks as conceptual frameworks or operational tools in conservation. Conserv. Biol. 2007, 21, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, V.; Pomarico, S. Ecological land suitability analysis through spatial indicators: An application of the analytic network process technique and ordered weighted average approach. Ecol. Indic. 2013, 34, 507–519. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Nature conservation planning in Europe: Developing ecological networks. Landsc. Urban Plan. 1995, 32, 169–183. [Google Scholar] [CrossRef]
- Jongman, R.H.G.; Külvik, M.; Kristiansen, I. European ecological networks and greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Mchugh, N.; Thompson, S. A rapid ecological network assessment tool and its use in locating habitat extension areas in a changing landscape. J. Nat. Conserv. 2011, 19, 236–244. [Google Scholar] [CrossRef]
- Opdam, P.; Verboom, J.; Pouwels, R. Landscape cohesion: An index for the conservation potential of landscapes for biodiversity. Landsc. Ecol. 2003, 18, 113–126. [Google Scholar] [CrossRef]
- Verboom, J.; Pouwels, R. Ecological Functioning of Ecological Networks: A Species Perspective. Ecological Networks and Greenways; Concept, Design, Implementation; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Verboom, J.; Foppen, R.; Chardon, P.; Opdam, P.; Luttikhuizen, P. Introducing the key patch approach for habitat networks with persistent populations: An example for marshland birds. Biol. Conserv. 2001, 100, 89–101. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.P.; Blust, G.D.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- Ray, N.; Lehmann, A.; Joly, P. Modeling spatial distribution of amphibian populations: A GIS approach based on habitat matrix permeability. Biodivers. Conserv. 2002, 11, 2143–2165. [Google Scholar] [CrossRef]
- Szabó, S.; Novák, T.; Elek, Z. Distance models in ecological network management: A case study of patch connectivity in a grassland network. J. Nat. Conserv. 2012, 20, 293–300. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Chen, B.; Zhang, L.; Zhang, Y.; Su, M. An ecological network perspective in improving reserve design and connectivity: A case study of Wuyishan nature reserve in China. Ecol. Model. 2015, 306, 185–194. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Kuter, S.; Usul, N.; Kuter, N. Bandwidth determination for kernel density analysis of wildfire events at forest sub-district scale. Ecol. Model. 2011, 222, 3033–3040. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.; Sun, L.; Wang, Z. Spatial evolution and locational determinants of high-tech industries in Beijing. Chin. Geogr. Sci. 2013, 23, 249–260. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wang, X.Y.; Zhang, Y.; Nan, Z.; Shen, B.G. The over polluted water quality assessment of Weihe River based on kernel density estimation. Procedia Environ. Sci. 2012, 13, 1271–1282. [Google Scholar] [CrossRef]
- Bryan, B.A.; King, D.; Ward, J.R. Modelling and mapping agricultural opportunity costs to guide landscape planning for natural resource management. Ecol. Indic. 2011, 11, 199–208. [Google Scholar] [CrossRef]
- Vizzari, M.; Sigura, M. Landscape sequences along the urban–rural–natural gradient: A novel geospatial approach for identification and analysis. Landsc. Urban Plan. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Biondi, E.; Casavecchia, S.; Pesaresi, S.; Zivkovic, L. Natura 2000 and the pan-European ecological network: A new methodology for data integration. Biodivers. Conserv. 2012, 21, 1741–1754. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, H.; Xie, G. Ecological functions and their values in Chinese cropland ecosystem. China Popul. Resour. Environ. 2007, 17, 55–60. [Google Scholar]
- Chang, K.T. Introduction to Geographic Information Systems, 8th ed.; McGraw-Hill: New York, NY, USA, 2015. [Google Scholar]
- Cai, X.J.; Wu, Z.F.; Cheng, J. Analysis of road network pattern and landscape fragmentation based on kernel density estimation. Chin. J. Ecol. 2012, 31, 158–164. (In Chinese) [Google Scholar]
- Jenks, G.F. The data model concept in statistical mapping. In International Yearbook of Cartography; George Philip and Son: London, UK, 1967; Volume 7, pp. 186–190. [Google Scholar]
- Slocum, T.A.; McMaster, R.B.; Kessler, F.C.; Howard, H.H. Thematic Cartography and Geovisualization, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Beagle, J.R.; Kondolf, G.M.; Adams, R.M.; Marcus, L. Anticipatory management for in stream habitat: Application to Carneros Creek, California. River Res. Appl. 2016, 32, 280–294. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef]
- Scott, D.W.; Terrell, G.R. Biased and unbiased cross-validation in density estimation. J. Am. Stat. Assoc. 1987, 82, 1131–1146. [Google Scholar] [CrossRef]
- Turlach, B.A. Bandwidth Selection in Kernel Density Estimation: A Review. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6770&rep=rep1&type=pdf (accessed on 18 October 2016).
Landscape Types | Core Habitats (km2) | Buffer Patches (km2) | Ecological Corridors (km2) | Stepping Stones (km2) | Isolated Elements (km2) |
---|---|---|---|---|---|
Forest | 17,470.96 | 17,891.62 | 12,362.14 | 6398.39 | 1929.55 |
Grassland | 5799.77 | 10,218.11 | 7786.99 | 3725.76 | 681.30 |
Orchard | 1733.27 | 3136.86 | 2790.82 | 2053.36 | 798.38 |
Wetland | 2677.23 | 1788.16 | 1424.82 | 487.43 | 95.67 |
Landscape Types | Core Area (km2) | Percent (%) | Buffer Zone (km2) | Percent (%) | Corridor (km2) | Percent (%) | Isolated Area (km2) | Percent (%) |
---|---|---|---|---|---|---|---|---|
Cultivated land | 3900.64 | 8 | 8799.59 | 20 | 30,659.65 | 51 | 46,359.83 | 75 |
Orchard | 3835.23 | 8 | 3085.2 | 7 | 2047.85 | 3 | 1544.42 | 2 |
Forest | 29,013.19 | 58 | 18,130.43 | 40 | 7365.21 | 12 | 1543.83 | 2 |
Grassland | 11,817.69 | 24 | 9843.19 | 22 | 5469.11 | 9 | 1081.95 | 2 |
Wetland | 631.43 | 1 | 1511.54 | 3 | 2758.83 | 5 | 9022.68 | 15 |
Artificial surface | 458.11 | 1 | 1503.64 | 3 | 8209.32 | 14 | 1579.94 | 3 |
Other | 493.4 | 1 | 2233.46 | 5 | 3056.1 | 5 | 1017.06 | 2 |
Summary | 50,149.68 | 100 | 45,107.05 | 100 | 59,566.07 | 100 | 62,149.71 | 100 |
LDI | 23.61–36.47 | 16.89–23.60 | 10.17–16.88 | 0–10.16 |
Spatial Configuration | Characteristics | Strategies |
---|---|---|
Core areas | Mainly forest and grassland, rich biological diversity, most important ecological sources and core areas | Enhance the restoration of core habitats of the Taihang Mountains, Yanshan Mountains and Bashan Plateau |
Buffer zones | Surrounds core areas, important habitats, obvious habitat isolation, insufficient protection and restoration | Return farmland to forest and grazing land to grassland in the mountains and conserve and restore wetlands |
Corridors | Complex and diverse landscapes, artificial surfaces, poor spatial continuity, large regional differences | Restrain urban expansion, improve ecological connectivity, plan Beijing-Tianjin green corridors and forest parks around the capital, plan ecological corridors in Haihe River Basin, construct ecological farmland in plain areas |
Isolated elements | Mainly cultivated land, rare natural habitats, serious fragmentation, wide distribution of river networks, high degree of human interference | Strengthen land consolidation, use current orchards to form stable artificial stepping stones, construct ecological farmland in plain areas, develop ecological agriculture |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Lv, Y.; Zhang, C.; Yun, W.; Yang, J.; Zhu, D. Analysis and Planning of Ecological Networks Based on Kernel Density Estimations for the Beijing-Tianjin-Hebei Region in Northern China. Sustainability 2016, 8, 1094. https://doi.org/10.3390/su8111094
Li P, Lv Y, Zhang C, Yun W, Yang J, Zhu D. Analysis and Planning of Ecological Networks Based on Kernel Density Estimations for the Beijing-Tianjin-Hebei Region in Northern China. Sustainability. 2016; 8(11):1094. https://doi.org/10.3390/su8111094
Chicago/Turabian StyleLi, Pengshan, Yahui Lv, Chao Zhang, Wenju Yun, Jianyu Yang, and Dehai Zhu. 2016. "Analysis and Planning of Ecological Networks Based on Kernel Density Estimations for the Beijing-Tianjin-Hebei Region in Northern China" Sustainability 8, no. 11: 1094. https://doi.org/10.3390/su8111094