For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue
Abstract
:1. Introduction
Cases of Hybrid Renewable Energy Systems for Particular Areas
2. Jeju World Cup Stadium
2.1. Location and Facilities
2.2. Load Information
2.3. Solar Energy Information
2.4. Wind Energy Information
3. Key Parameters for the Simulation
3.1. Annual Real Interest Rate
3.2. COE and NPC
4. Renewable Electricity Generation Systems
5. Results
6. Discussion and Conclusions
- The various supporting plans conducted by the governments can be applied.
- Because the current price of the midnight electricity is significantly low, using PV panels can take priority over installing and operating other suggested components.
- In order to minimize the capacity and costs of an electric converter, other wind turbine models which can be connected to the AC load can be considered.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Media Jeju. An Operating Deficit of Jeju World Cup Stadium. Available online: http://www.mediajeju.com/news/articleView.html?idxno=175365 (accessed on 17 June 2016).
- Park, E. Utilization of Incheon AG Stadium and an Operating Deficit of Incheon AG Stadium. Available online: http://www.asiatoday.co.kr/view.php?key=20150406010003169 (accessed on 17 June 2016).
- Oh, Y. Deficits of Five World Cup Stadiums in South Korea. Available online: http://news.chosun.com/site/data/html_dir/2014/08/13/2014081300182.html (accessed on 17 June 2016).
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Harish Kumar, R.N. Comparison Study: Cost of Electricity, Emission, and Renewable Fraction for Single Residential Load at Geelong, Victoria State-Australia using HOMER. J. Clean Energy Technol. 2014, 2, 349–356. [Google Scholar]
- Park, E.; Kwon, S.J. Solutions for optimizing renewable power generation systems at Kyung-Hee University’s Global Campus, South Korea. Renew. Sustain. Energy Rev. 2016, 58, 439–449. [Google Scholar] [CrossRef]
- Yoo, K.; Park, E.; Kim, H.; Ohm, J.Y.; Yang, T.; Kim, K.J.; Chang, H.J.; del Pobil, A.P. Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea. Sustainability 2014, 6, 7883–7893. [Google Scholar] [CrossRef]
- Park, E.; Kwon, S.J. Towards a Sustainable Island: Independent optimal renewable power generation systems at Gadeokdo Island in South Korea. Sustain. Cities Soc. 2016, 23, 114–118. [Google Scholar] [CrossRef]
- Park, E.; Han, T.; Kim, T.; Kwon, S.J.; del Pobil, A.P. Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea. Sustainability 2016, 8, 877. [Google Scholar] [CrossRef]
- Park, E.; Yoo, K.; Ohm, J.Y.; Kwon, S.J. Case study: Renewable electricity generation systems on Geoje Island in South Korea. J. Renew. Sustain. Energy 2016, 8, 015904. [Google Scholar] [CrossRef]
- Shin, Y.; Koo, W.Y.; Kim, T.H.; Jung, S.; Kim, H. Capacity design and operation planning of a hybrid PV-wind-battery-diesel power generation system in the case of Deokjeok Island. Appl. Therm. Eng. 2015, 89, 514–525. [Google Scholar] [CrossRef]
- Chae, W.K.; Lee, H.J.; Won, J.N.; Park, J.S.; Kim, J.E. Design and field tests of an inverted based remote microgrid on a Korean Island. Energies 2015, 8, 8193–8210. [Google Scholar] [CrossRef]
- Bae, K.; Shim, J.H. Economic and environmental analysis of a wind-hybrid power system with desalination in Hong-do, South Korea. Int. J. Precis. Eng. Manuf. 2012, 13, 623–630. [Google Scholar] [CrossRef]
- Jang, H.; Kim, S. An Economic Analysis of Renewable Energy Hybrid Systems in the off-Grid Islands. Available online: http://www.dbpia.co.kr/Journal/ArticleDetail/NODE06188610 (accessed on 13 September 2016).
- Seo, H.; Chang, S.; Kim, E. Economic and Environmental Feasibility on the Wind-Diesel Hybrid Power System in an Island near Seamangeum Area. Available online: www.dbpia.co.kr/Journal/ArticleDetail/NODE06188731 (accessed on 13 September 2016).
- Korea Tourism Organization. Jeju World Cup Stadium. Available online: http://english.visitkorea.or.kr/enu/SI/SI_EN_3_1_1_1.jsp?cid=266936 (accessed on 17 June 2016).
- Brzozowski, A.; Freeman, G.; Lee, J. The Roof Structure of the Jeju Worldcup Stadium. Struct. Congr. 2005, 1, 1–12. [Google Scholar]
- K-League. Jeju United FC. Available online: http://www.kleague.com/eng/sub.asp?localNum=5&pageNum=1&subNum=0&TeamId=K04&LeagueId=2 (accessed on 17 June 2016).
- Dursun, B. Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey. Renew. Sustain. Energy Rev. 2012, 16, 6183–6190. [Google Scholar] [CrossRef]
- Asrari, A.; Ghasemi, A.; Javidi, M.H. Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study. Renew. Sustain. Energy Rev. 2012, 16, 3123–3130. [Google Scholar] [CrossRef]
- Huh, S.Y.; Lee, J.; Shin, J. The economic value of South Korea’s renewable energy policies (RPS, RFS, and RHO): A contingent valuation study. Renew. Sustain. Energy Rev. 2015, 50, 64–72. [Google Scholar] [CrossRef]
- Shin, J.; Woo, J.; Huh, S.Y.; Lee, J.; Jeong, G. Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea. Energy Econ. 2014, 42, 17–26. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Kim, H.; Heo, E. Assessment of Korean customers’ willingness to pay with RPS. Renew. Sustain. Energy Rev. 2012, 16, 695–703. [Google Scholar] [CrossRef]
Location | Annual Earnings and Expenses (Estimated) |
---|---|
Seoul | +9.14 million USD in 2014 |
Busan | +2.13 million USD in 2013 |
Incheon | −1.60 million USD in 2014 |
Daegu | −4.07 million USD in 2014 |
Gwangju | +3.14 million USD in 2014 |
Daejeon | −1.26 million USD in 2014 |
Ulsan | −0.15 million USD in 2012 |
Suwon | +0.07 million USD in 2014 |
Jeonju | +0.14 million USD in 2014 |
Jeju | −0.41 million USD in 2014 |
Location | Type | PV | WT | BT | DG | HT | GC | COE | RF |
---|---|---|---|---|---|---|---|---|---|
Kyung-Hee University [6] | MC | √ | √ | √ | √ | √ | 0.509 | 1.00 | |
Ulleung [7] | IS | √ | √ | √ | √ | √ | 0.334 | 0.97 | |
Gadeokdo [8] | IS | √ | √ | √ | √ | 0.326 | 1.00 | ||
Jeju National University [9] | IS & MC | √ | √ | √ | √ | 0.356 | 1.00 | ||
Geoje [10] | IS | √ | √ | √ | √ | 0.472 | 1.00 | ||
Deokjeok [11] | IS | √ | √ | √ | √ | 0.302 | 1.00 | ||
Gasado [12] | IS | √ | √ | √ | √ | 1.284 | 0.94 | ||
Hongdo [13] | IS | √ | √ | √ | √ | 0.303 | 0.84 | ||
Chuja [14] | IS | √ | √ | √ | √ | 0.284 | 0.52 | ||
Geomoon [14] | IS | √ | √ | √ | √ | 0.241 | 0.39 | ||
Yeongsan [14] | IS | √ | √ | √ | 0.376 | 0.14 | |||
Seamangeum [15] | IS | √ | √ | √ | √ | 0.458 | 0.63 |
Components | OC1 | OC2 | OC3 |
---|---|---|---|
Wind turbines (#) | 100 | 208 | - |
PV arrays (kW) | 890 | - | 2730 |
Batteries (#) | 1930 | 3250 | 3860 |
Operating cost ($/year) | 228,516 | 330,728 | 379,422 |
Initial capital ($) | 5,707,970 | 7,290,250 | 9,945,940 |
Total NPC ($) | 9,687,156 | 13,049,261 | 16,552,863 |
COE ($/kWh) | 0.405 | 0.546 | 0.692 |
Renewable fraction | 1 | 1 | 1 |
Optimal Configurations | Components | Capital ($/Year) | Replacement ($/Year) | O&M ($/Year) | Salvage ($/Year) | Total ($/Year) |
---|---|---|---|---|---|---|
OC1 | Wind turbines | 83,270 | 46,076 | 20,000 | −11,428 | 137,918 |
PV arrays | 91,999 | 50,938 | 22,250 | −32,955 | 132,233 | |
Battery | 136,217 | 162,550 | 19,300 | −59,637 | 258,430 | |
Converter | 16,310 | 10,468 | 3550 | −2597 | 27,731 | |
System | 327,797 | 270,032 | 65,100 | −106,616 | 556,313 | |
OC2 | Wind turbines | 173,202 | 95,838 | 41,600 | −23,771 | 286,870 |
PV arrays | - | - | - | - | - | |
Battery | 229,381 | 273,724 | 32,500 | −100,424 | 435,181 | |
Converter | 16,080 | 10,321 | 3500 | −2560 | 27,341 | |
System | 418,664 | 379,883 | 77,600 | −126,755 | 749,391 | |
OC3 | Wind turbines | - | - | - | - | |
PV arrays | 282,201 | 156,248 | 68,250 | −101,085 | 405,613 | |
Battery | 272,434 | 325,100 | 38,600 | −119,273 | 516,861 | |
Converter | 16,539 | 10,616 | 3600 | −2633 | 28,122 | |
System | 571,174 | 491,963 | 110,450 | −222,992 | 950,596 |
Component/Load | OC1 (kWh/Year) | OC2 (kWh/Year) | OC3 (kWh/Year) | |
---|---|---|---|---|
Production | PV array | 1,179,356 (37%) | - | 3,617,575 (100%) |
Wind turbines | 2,007,862 (64%) | 4,176,345 (100%) | - | |
Consumption | AC primary load | 1,373,551 (100%) | 1,373,551 (100%) | 1,373,551 (100%) |
Quantity | Excess electricity | 1,531,579 | 2,505,224 | 1,886,374 |
Unmet load | 1046 | 1080 | 1200 | |
Capacity shortage | 1365 | 1373 | 1336 | |
Renewable fraction | 100% | 100% | 100% |
Factors | OC1 | OC2 | OC3 | |
---|---|---|---|---|
PV arrays | Rated capacity (kW) | 890 | - | 2730 |
Mean output (kW) | 135 | - | 413 | |
Mean output (kWh/day) | 3231 | - | 9911 | |
Capacity factor (%) | 15.1 | - | 15.1 | |
Total production | 1,179,356 | - | 3,617,575 | |
Output (min.~max.; kW) | 0~890 | - | 0~2734 | |
PV penetration (%) | 85.8 | - | 263 | |
Hours of operation (h/year) | 4364 | - | 4364 | |
Levelized cost ($/kWh) | 0.112 | - | 0.112 | |
Wind turbines | Total rated capacity (kW) | 1000 | 2080 | - |
Mean output (kW) | 229 | 477 | - | |
Capacity factor (%) | 22.9 | 22.9 | - | |
Total production (kWh/year) | 2,007,862 | 4,176,345 | - | |
Output (min.~max.; kW) | 0~998 | 0~2075 | - | |
Wind penetration (%) | 146 | 304 | - | |
Hours of operation (h/year) | 7325 | 7325 | - | |
Levelized cost ($/kWh) | 0.0687 | 0.0687 | - | |
Battery | Nominal capacity (kWh) | 13,386 | 22,542 | 26,773 |
Usable nominal capacity (kWh) | 8032 | 13,525 | 16,064 | |
Autonomy (h) | 51.2 | 86.2 | 102 | |
Lifetime throughput (kWh) | 18,615,236 | 31,346,900 | 37,230,472 | |
Battery wear cost ($/kWh) | 0.142 | 0.142 | 0.142 | |
Energy in (kWh/year) | 648,429 | 725,490 | 1,051,122 | |
Energy out (kWh/year) | 518,950 | 580,487 | 845,901 | |
Storage depletion (kWh/year) | 226 | 105 | 5541 | |
Losses (kWh/year) | 129,253 | 144,897 | 199,680 | |
Annual throughput (kWh/year) | 580,202 | 649,002 | 945,751 | |
Converter (Inverter) | Capacity (kW) | 355 | 350 | 360 |
Mean output | 157 | 157 | 157 | |
Output (min.~max.; kW) | 0~321 | 0~321 | 0~321 | |
Capacity factor (%) | 44.2 | 44.8 | 43.6 | |
Hours of operation (h/year) | 8759 | 8758 | 8755 | |
Energy in (kWh/year) | 1,526,172 | 1,526,135 | 1,526,001 | |
Energy out (kWh/year) | 1,373,551 | 1,373,517 | 1,373,397 | |
Losses (kWh/year) | 152,621 | 152,618 | 152,604 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.; Kwon, S.J.; Del Pobil, A.P. For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue. Sustainability 2016, 8, 969. https://doi.org/10.3390/su8100969
Park E, Kwon SJ, Del Pobil AP. For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue. Sustainability. 2016; 8(10):969. https://doi.org/10.3390/su8100969
Chicago/Turabian StylePark, Eunil, Sang Jib Kwon, and Angel P. Del Pobil. 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue" Sustainability 8, no. 10: 969. https://doi.org/10.3390/su8100969
APA StylePark, E., Kwon, S. J., & Del Pobil, A. P. (2016). For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue. Sustainability, 8(10), 969. https://doi.org/10.3390/su8100969