# An Efficient Graph-based Method for Long-term Land-use Change Statistics

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Works

#### 2.1. STDB for Land Management

**Figure 2.**STDB based on a typical spatio-temporal model (refer to Teng, 2005 [18]).

#### 2.2. Statistical Process in STDB

## 3. Analysis of Land Use Change in Graph Theory Approach

#### 3.1. Characterization of Spatio-Temporal Flow Network

**Figure 3.**(

**a**) Land-use snapshots at three different timestamps; (

**b**) corresponding spatio-temporal graph (refer to Yin, 2003 [23]).

#### 3.2. Modelling Long-Term Transition as Multi-Commodity Flow

#### 3.3. Constant Multi-Commodity Flow Condition

**Preliminary.**A transportation network with multiple sources and sinks is a 5-tuple (V, E, S, T, c) where m sources ${s}_{1},{s}_{2,\dots}{s}_{m}\in S$ and n sinks ${t}_{1},{t}_{2},\dots {t}_{n}\in T$ belong to the vertex set V, and $c:E\to {\mathbb{R}}_{+}$ is the capacity function for edges in the directed edge set E.

**Definition 1.**A vertex v is called mixed vertex if more than one source can reach v and v can reach more than one sink, i.e.:

**Definition 2.**A one-way cut is a cut $\left[X,\overline{X}\right]$ separating S from T where no directed edges have a tail in $\overline{X}$ and a head in $X$.

**Definition 3.**An S-T exclusive cut $\delta \left(X\right)$ is a one-way cut that only contains edges which can be reached from exactly one source and can reach exactly one sink, i.e.:

**Lemma 1.**

- $v\in T$, then $\left|R\left(v\right)\cap \text{}T\right|=1$
- $v\in V-T$, then v must be reachable from other sources than ${s}_{i}$ (otherwise it will be included in ${X}_{i}$), so it must connect only one sink (or it is a mixed vertex). $\left|R\left(v\right)\cap \text{}T\right|=1$

**Definition 4.**A multiflow f on a network is saturated if the total flow on each edge is maximized. i.e.,:

**Definition 5.**A network is capacity-balanced if for all internal vertices, the capacity sum of inflow edges equals the capacity sum of outflow edges. Let ${c}^{-}\left(v\right)\u2254{\sum}_{u\in V}c\left(u,v\right)$, ${c}^{+}\left(v\right)\u2254{\sum}_{u\in V}c\left(v,u\right)$. Hereby, the capacity-balanced constraint is represented as:

**Fact 1.**In a DACB network, the residual network for any given feasible flow is still a DACB network.

**Fact 2.**In a DACB network, if P is the only S-T path that includes edge (u, v), then (u, v) has the smallest capacity among edges along P.

**Proposition 1.**

**Lemma 2.**

**Lemma 3.**

**Theorem 1.**

- The saturated multi-commodity flow F is constant
- No mixed vertices exist
- An S-T exclusive cut exists

#### 3.4. Reducible or Unreducible

## 4. Description of the Graph-Based TSP Method

PartitionSTFN(N) /* Label T-Reachability */ Q ← ∅; |

## 5. Data Experiments

#### 5.1. Sample Data

**Figure 7.**Experimental land-use data in Hunan. The first picture displays base state at 2009, and the following five pictures display incremental data indicating the location and time of change events (2009–2014).

#### 5.2. Method for Evaluation

#### 5.3. Discussion of the Results

Query Condition | Basic TSP | Query-Optimized TSP | Graph-Based TSP | |||
---|---|---|---|---|---|---|

Amount | Ratio | Amount | Ratio | Amount | Ratio | |

2009–2010 | 37,162 | 1.0000 | 2105 | 0.0566 | 0 | 0.0000 |

2009–2011 | 37,254 | 1.0000 | 2530 | 0.0679 | 13 | 0.0003 |

2009–2012 | 37,311 | 1.0000 | 2613 | 0.0700 | 13 | 0.0003 |

2009–2013 | 37,320 | 1.0000 | 3723 | 0.0998 | 20 | 0.0005 |

2009–2014 | 38,938 | 1.0000 | 3914 | 0.1005 | 25 | 0.0006 |

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev.
**2013**, 24, 582–590. [Google Scholar] [CrossRef] - De Mûelenaere, S.; Frankl, A.; Haile, M.; Poesen, J.; Deckers, J.; Munro, N.; Veraverbeke, S.; Nyssen, J. Historical landscape photographs for calibration of Landsat land use/cover in the Northern Ethiopian highlands. Land Degrad. Dev.
**2014**, 4, 319–335. [Google Scholar] [CrossRef] [Green Version] - Muñoz-Rojas, M.; Jordán, A.; Zavala, L.M.; de la Rosa, D.; Abd-Elmabod, S.K.; Anaya-Romero, M. Impact of land use and land cover changes on organic carbon stocks in mediterranean soils (1956–2007). Land Degrad. Dev.
**2015**, 26, 168–179. [Google Scholar] [CrossRef] - Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad. Dev.
**2013**, 24, 499–510. [Google Scholar] [CrossRef] - Saha, D.; Kukal, S.S. Soil structural stability and water retention characteristics under different land uses of degraded lower himalayas of north-west India. Land Degrad. Dev.
**2015**, 26, 263–271. [Google Scholar] [CrossRef] - Keesstra, S.D.; Geissen, V.; van Schaik, L.; Mosse., K.; Piiranen, S. Soil as a filter for groundwater quality. Curr. Opin. Env. Sust.
**2012**, 4, 507–516. [Google Scholar] [CrossRef] - Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y. Effects of land use on soil moisture variations in a semi-arid catchment: Implications for land and agricultural water management. Land Degrad. Dev.
**2014**, 25, 163–172. [Google Scholar] [CrossRef] - Berendse, F.; van Ruijven, J.; Jongejans, E.; Keesstra, S.D. Loss of plant species diversity reduces soil erosion resistance of embankments that are crucial for the safety of human societies in low-lying areas. Ecosystems
**2015**, 18, 881–888. [Google Scholar] [CrossRef] [Green Version] - Wang, X.; Bao, Y. Study on the method of land use dynamics change research. Prog. Geogr.
**1999**, 18, 83–89. [Google Scholar] - Zhu, H.; Li, X. Discussion on the index method of regional land use change. Acta Geogr. Sinica
**2003**, 5, 643–650. [Google Scholar] - Rutherford, G.N.; Bebi, P.; Edwards, P.J.; Zimmermann, N.E. Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecol. Model
**2008**, 212, 460–471. [Google Scholar] [CrossRef] - Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability
**2015**, 4, 4260–4279. [Google Scholar] [CrossRef] - Xie, H.L.; Liu, L.M.; Li, B.; Zhang, X.S. Spatial autocorrelation analysis of multi-scale land-use changes: A case study in Ongniud Banner, Inner Mongolia. Acta. Geo. Sin.
**2006**, 61, 389–400. [Google Scholar] - Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Computational geometry. In Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2009; pp. 1022–1027. [Google Scholar]
- Liu, N.; Liu, R.; Zhu, G.; Xie, J. A spatial-temporal system for dynamic cadastral management. J. Environ. Manage.
**2006**, 78, 373–381. [Google Scholar] [CrossRef] [PubMed] - Gao, Y.; Pan, Y.; Gao, B.; Zhang, X.; Gao, J.; Zhang, Y. Key Technologies for land use survey oriented spatio-temporal database construction. Sci. Surv. Mapp.
**2015**, 40, 49–54. [Google Scholar] - Chen, X.; Wu, H.; Li, X.; Zhang, W. Study on event-based spatio-temporal data model for land use change. J. Imag. Graph.
**2003**, 8, 957–963. [Google Scholar] - Teng, L.; Liu, R.; Liu, N. A study on spatio-temporal data model based on feature and event. J. Rem. Sens.
**2005**, 9, 634–639. [Google Scholar] - Clementini, E.; Di Felice, P. A comparison of methods for representing topological relationships. Inform. Sci. Appl.
**1995**, 3, 149–178. [Google Scholar] [CrossRef] - Tøssebro, E.; Nygård, M. Representing topological relationships for spatiotemporal objects. GeoInformatica
**2011**, 15, 633–661. [Google Scholar] [CrossRef] - Tang, Y. The linkage mechanism and incremental extraction of land use updating. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Schneider, M. Spatial and spatio-temporal data models and languages. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer US: Medford, MA, USA, 2009; pp. 2681–2685. [Google Scholar]
- Worboys, M.F.; Hearnshaw, H.M.; Maguire, D.J. Object-oriented data modelling for spatial databases. Int. J. Geogr. Inform. Syst. Appl. Rem. Sens.
**1990**, 4, 369–383. [Google Scholar] [CrossRef] - Ruan, M.; Liu, R.; Liu, N.; Teng, L. Research on land utilization temporal statistic model based on event. Appl. Resear. Comput.
**2005**, 7, 31–33. [Google Scholar] - Wilcox, D.J.; Harwell, M.C.; Orth, R.J. Modeling Dynamic Polygon Objects in Space and Time: A New Graph-based Technique. Cartogr. Geogr. Inform. Sci.
**2000**, 27, 153–164. [Google Scholar] [CrossRef] - Yin, Z.; Li, L.; Ai, Z.X. A study of spatio-temporal data model based on graph theory. Acta Geod. Cartogr. Sinica
**2003**, 32, 168–172. [Google Scholar] - Spéry, L.; Claramunt, C.; Libourel, T. A spatio-temporal model for the manipulation of lineage metadata. GeoInformatica
**2001**, 5, 51–70. [Google Scholar] [CrossRef] - Del Mondo, G.; Rodriguez, M.; Claramunt, C. Modeling consistency of spatio-temporal graphs. Data Knowl. Eng.
**2013**, 84, 59–80. [Google Scholar] [CrossRef] - McBride, R. Advances in solving the multicommodity-flow problem. Interfaces
**1998**, 28, 32–41. [Google Scholar] [CrossRef] - West, D.B. Introduction to Graph Theory, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; p. 470. [Google Scholar]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Linear programming. In Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2009; pp. 862–863. [Google Scholar]
- Wing, O.; Kim, W.H. The path matrix and switching functions. J. Frankl. Instit.
**1959**, 268, 251–269. [Google Scholar] [CrossRef] - Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Chi, W. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci.
**2014**, 2, 195–210. [Google Scholar] [CrossRef] - Žalik, B. Two efficient algorithms for determining intersection points between simple polygons. Comput. Geosci.
**2000**, 26, 137–151. [Google Scholar] [CrossRef] - Peuquet, D.J. Time in GIS and Geographical Databases. Geogr. Inform. Syst.
**1999**, 1, 91–102. [Google Scholar] - Wang, S.; Zhang, Z.; Zhou, Q.; Wang, C. Study on Spatial temporal features of land use/land cover change based on technologies of RS and GIS. J. Rem. Sens.
**2002**, 6, 223–228. [Google Scholar]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Y.; Gao, Y.; Gao, B.; Pan, Y.; Yan, M.
An Efficient Graph-based Method for Long-term Land-use Change Statistics. *Sustainability* **2016**, *8*, 9.
https://doi.org/10.3390/su8010009

**AMA Style**

Zhang Y, Gao Y, Gao B, Pan Y, Yan M.
An Efficient Graph-based Method for Long-term Land-use Change Statistics. *Sustainability*. 2016; 8(1):9.
https://doi.org/10.3390/su8010009

**Chicago/Turabian Style**

Zhang, Yipeng, Yunbing Gao, Bingbo Gao, Yuchun Pan, and Mingyang Yan.
2016. "An Efficient Graph-based Method for Long-term Land-use Change Statistics" *Sustainability* 8, no. 1: 9.
https://doi.org/10.3390/su8010009