Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems
Abstract
:1. Introduction
2. Experimental Section
2.1. Essential Oils
2.2. In Vitro Fermentations
2.3. Sampling and Measurement
Component | Operative Range | Accuracy |
---|---|---|
Oxygen detector | 0%–25% Volume | +/−1% |
Methane detector | 0%–100% Volume | +/−1.5% |
Carbon dioxide detector | 0%–100% Volume | +/−1.5% |
Carbon monoxide detector | 0–20,000 ppm | +/−1.5% |
Ammonia detector | 0–1000 ppm | +/−3% |
Hydrogen sulfide detector | 0–500 ppm | +/−3% |
Absolute pressure detector | 100–1200 mbar | +/−2% |
Differential pressure detector | −200–0 mbar | +/−2% |
Temperature detector | −10–100 °C | 0.5 °C |
Flow detector | 0.6–40 m/s | |
Aspiration pump | 0–2000 cm3/min | |
Aspiration pump | +100/−450 mBar |
2.4. Statistical Analysis
3. Results and Discussion
3.1. Essential Oils
Component | Oregano Essential Oil (%) a,b | Rosemary Essential Oil (%) a,b | RI c,d |
---|---|---|---|
α-Pinene | 1.79 ± 0.11 | 23.02 ± 0.27 | 939 |
β-Pinene | 0.26 ± 0.22 | 5.65 ± 0.15 | 979 |
Camphene | ND | 9.90 ± 0.59 | 954 |
Myrcene | 2.14 ± 0.19 | 1.64 ± 0.12 | 989 |
3-Octanol | 0.30 ± 0.26 | ND | 998 |
Δ3-Carene | ND | 0.92 ± 0.06 | 1009 |
α-Terpinene | 1.48 ± 0.10 | ND | 1018 |
p-Cymene | 1.77 ± 0.41 | 0.20 ± 0.10 | 1028 |
Limonene | ND | 2.20 ± 0.26 | 1029 |
β-Phellandrene | 14.01 ± 1.06 | ND | 1032 |
1,8-Cineol | 0.80 ± 0.69 | 19.08 ± 0.35 | 1034 |
Linalool | 1.58 ± 0.23 | 1.07 ± 0.07 | 1101 |
Camphor | ND | 21.86 ± 0.16 | 1144 |
Borneol | 0.59 ± 0.03 | 3.70 ± 0.16 | 1153 |
γ-Terpinene | 5.69 ± 0.27 | ND | 1059 |
Terpinen-4-ol | 0.32 ± 0.28 | ND | 1169 |
α-Terpineol | ND | 1.05 ± 0.21 | 1189 |
Verbenone | ND | 5.39 ± 0.10 | 1207 |
Thymol | 0.82 ± 0.09 | ND | 1294 |
Bornyl acetate | ND | 2.62 ± 0.11 | 1295 |
Carvacrol | 60.29 ± 2.25 | ND | 1302 |
β-Caryophyllene | 6.77 ± 0.15 | 1.53 ± 0.08 | 1295 |
Caryophyllene oxide | 0.77 ± 0.04 | ND | 1421 |
Total (%) | 99.38 | 99.83 | |
Total identified | 99.38 | 99.83 | |
Monoterpene hydrocarbons | 27.14 | 43.53 | |
Oxygenated monoterpenes | 64.40 | 54.77 | |
Sesquiterpene hydrocarbons | 6.77 | 1.53 | |
Oxygenated sesquiterpenes | 0.77 | ||
Alcohols | 0.30 |
3.2. In Vitro Fermentations
3.2.1. Effects on Gas Production and Feed Degradability
Control | Oregano Essential Oil (g/L) | Rosemary Essential Oil (g/L) | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | 0.5 | 1.0 | 1.5 | 2.0 | T | D | TxD | |||
TG | 30.62 a | 30.63 a | 30.59 a | 28.90 b | 27.94 c | 30.65 a | 30.63 a | 30.63 a | 30.61 a | 0.13 | <0.001 | <0.001 | <0.001 |
CH4 | 9.21 a,b | 8.68 b,c | 4.18 d | 2.57 e | 2.71 e | 9.36 a | 9.12 a | 8.66 b,c | 8.43 c | 0.13 | <0.001 | <0.001 | <0.001 |
NH3 | 1314.50 a | 509.00 b | 479.33 b | 538.50 b | 313.50 b | 712.33 a,b | 287.67 b | 319.00 b | 399.67 b | 130.64 | <0.01 | 0.270 | 0.314 |
CO2 | 20.35 a | 20.53 a | 13.25 b | 6.75 c | 4.63 c | 19.53 a | 19.76 a | 20.05 a | 19.95 a | 0.66 | <0.001 | <0.001 | <0.001 |
DMD | 76.00 a | 64.67 b,c | 53.17 d | 51.83 d | 51.83 d | 76.83 a | 69.00 b | 64.33 b,c | 59.17 c | 1.12 | <0.001 | <0.001 | <0.05 |
NDFD | 81.74 a | 74.98 b,c | 65.30 d,e | 63.60 e | 66.27 d,e | 81.01 a,b | 74.18 c | 72.77 c,d | 69.25 c–e | 1.47 | <0.001 | <0.001 | <0.05 |
3.2.2. Effects on Production of Volatile Fatty Acids
Control | Oregano Essential Oil (g/L) | Rosemary Essential Oil (g/L) | SEM | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1 | 1.5 | 2 | 0.5 | 1 | 1.5 | 2 | T | D | TxD | |||
Total VFA | 81.70 a | 75.34 a | 34.72 b | 31.92 b | 27.70 b | 76.67 a | 80.53 a | 95.06 a | 92.91 a | 5.24 | <0.001 | <0.05 | <0.001 |
Acetic (A) | 63.06 b–d | 61.61 d | 62.75 c,d | 64.95 b,c | 63.86 b–d | 63.19 b–d | 62.97 b–d | 65.61 b | 68.56 a | 0.56 | <0.001 | <0.001 | <0.01 |
Propionic (P) | 15.75 a–c | 14.50 b,c | 13.87 c | 14.70 b,c | 15.61 a–c | 15.63 a–c | 17.68 a | 16.58 a,b | 14.24 c | 0.45 | <0.001 | 0.250 | <0.001 |
Butyric | 15.80 b | 18.06 a | 17.98 a | 15.28 b,c | 15.27 b–d | 15.76 b,c | 13.87 b–d | 13.30 d | 13.80 c,d | 0.42 | <0.001 | <0.001 | <0.05 |
Isobutyric | 1.06 a,b | 1.07 a,b | 1.23 a,b | 1.28 a,b | 1.40 a | 1.11 a,b | 1.01 a,b | 0.86 b | 0.48 c | 0.09 | <0.001 | 0.282 | <0.001 |
n-valeric | 1.65 | 1.69 | 1.79 | 1.68 | 1.40 | 1.65 | 1.57 | 1.06 | 0.96 | 0.21 | 0.143 | 0.110 | 0.610 |
Isovaleric | 2.11 a,b | 2.17 a,b | 1.63 b–d | 1.30 d | 1.50 c,d | 2.13 a,b | 2.22 a | 1.92 a–c | 1.48 c,d | 0.12 | <0.001 | <0.001 | <0.05 |
Capronic | 0.54 b,c | 0.83 a,b | 0.72 a–c | 0.76 a,b | 0.86 a | 0.51 b,c | 0.62 a–c | 0.61 a–c | 0.45 c | 0.06 | <0.01 | 0.983 | 0.117 |
Heptanoic | 0.03 b | 0.07 a,b | 0.03 b | 0.05 a,b | 0.10 a | 0.04 a,b | 0.05 a,b | 0.05 a,b | 0.03 b | 0.01 | <0.05 | 0.503 | 0.051 |
A/P | 4.00 b,c | 4.28 a,b,c | 4.53 a,b | 4.42 a,b | 4.09 a–c | 4.05 b,c | 3.58 c | 3.96 b,c | 4.82 a | 0.15 | <0.001 | 0.107 | <0.001 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lassen, J.; Løvendahl, P.; Madsen, J. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J. Dairy Sci. 2012, 95, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Cotana, F.; Petrozzi, A.; Pisello, A.L.; Cavalaglio, G.; Coccia, V.; Moretti, E. An innovative small sized anaerobic digester integrated in historic building. Energy Procedia 2013, 45, 333–341. [Google Scholar] [CrossRef]
- Rossi, F.; Nicolini, A. Experimental investigation on a novel electrolyte configuration for cylindrical molten carbonate fuel cells. J. Fuel Cell Sci. Technol. 2011, 8. [Google Scholar] [CrossRef]
- Rossi, F.; Nicolini, A. Ethanol reforming for supplying molten carbonate fuel cells. Int. J. Low-Carbon Technol. 2013, 8, 140–145. [Google Scholar] [CrossRef]
- Cotana, F.; Rossi, F.; Nicolini, A. A new geometry high performance small power MCFC. J. Fuel Cell Sci. Technol. 2004, 1, 25–29. [Google Scholar] [CrossRef]
- FAO. Greenhouse gas emissions from the dairy sector. In A Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- FAO. Livestock’s long shadow. In Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Eckard, R.J.; Grainger, C.; de Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Weimer, P.J. Manipulating ruminal fermentation: A microbial ecological perspective. J. Anim. Sci. 1998, 76, 3114–3122. [Google Scholar] [PubMed]
- Tedeschi, L.O.; Fox, D.G.; Tylutki, T.P. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 2003, 32, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Soliva, C.R.; Hess, H.D. Measuring methane emission of ruminants by in vitro and in vivo techniques. In Measuring Methane Production from Ruminants; Springer: Dordrecht, The Netherlands, 2007; pp. 15–31. [Google Scholar]
- Cotana, F.; Coccia, V.; Petrozzi, A.; Cavalaglio, G.; Gelosia, M.; Merico, M.C. Energy valorization of poultry manure in a thermal power plant: Experimental campaign. Energy Procedia 2014, 45, 315–322. [Google Scholar] [CrossRef]
- Cotana, F.; Petrozzi, A.; Cavalaglio, G.; Coccia, V.; Pisello, A.L.; Bonamente, E. A batch digester plant for biogas production and energy enhancement of organic residues from collective activities. Energy Procedia 2014, 61, 1669–1672. [Google Scholar] [CrossRef]
- Cotana, F.; Messineo, A.; Petrozzi, A.; Coccia, V.; Cavalaglio, G.; Aquino, A. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste. Sustainability 2014, 6, 5714–5729. [Google Scholar] [CrossRef]
- Gugliermetti, F.; Dell’Omo, P.P. A theoretical and experimental approach to heat transfer from high temperature gas flowing inside nonhomogeneous rectangular pipes Revue. Gen. Therm. 1998, 37, 531–538. [Google Scholar] [CrossRef]
- Salata, F.; Coppi, M. A first approach study on the desalination of sea water using heat transformers powered by solar ponds. Appl. Energy 2014, 136, 611–618. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pinares-Patiño, C.S.; McEwan, J.C.; Dodds, K.G.; Cárdenas, E.A.; Hegarty, R.S.; Koolaard, J.P.; Clark, H. Repeatability of methane emissions from sheep. Anim. Feed Sci. Technol. 2011, 166–167, 210–218. [Google Scholar] [CrossRef]
- Cobellis, G.; Acuti, G.; Forte, C.; Menghini, L.; de Vincenzi, S.; Orrù, M.; Valiani, A.; Pacetti, D.; Trabalza-Marinucci, M. Use of Rosmarinus officinalis in sheep diet formulations: Effects on ruminal fermentation, microbial numbers and in situ degradability. Small Rumin. Res. 2015, 126, 10–18. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP® 9 Basic Analysis and Graphing; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Fleisher, A.; Sneer, N. Oregano spices and Origanum chemotypes. J. Sci. Food Agric. 1982, 33, 441–446. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Tsujisawa, T.; Nishihara, T.; Nakamura, M.; Kakinoki, Y. Antifungal activity of chemotype essential oils from rosemary against Candida albicans. Open J. Stomatol. 2013, 3, 176–182. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- Macheboeuf, D.; Morgavi, D.P.; Papon, Y.; Mousset, J.L.; Arturo-Schaan, M. Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim. Feed Sci. Technol. 2008, 145, 335–350. [Google Scholar] [CrossRef]
- Roy, D.; Tomar, S.K.; Sirohi, S.K.; Kumar, V.; Kumar, M. Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalo rumen liquor. Vet. World 2014, 7, 213–218. [Google Scholar] [CrossRef]
- Chaves, A.V.; Stanford, K.; Dugan, M.E.R.; Gibson, L.L.; McAllister, T.A.; van Herk, F.; Benchaar, C. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 2008, 117, 215–224. [Google Scholar] [CrossRef]
- Agarwal, N.; Shekhar, C.; Kumar, R.; Chaudhary, L.C.; Kamra, D.N. Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim. Feed Sci. Technol. 2009, 148, 321–327. [Google Scholar] [CrossRef]
- Kumar, R.; Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Effect of eucalyptus (Eucalyptus globulus) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim. Feed Sci. Technol. 2009, 9, 237–243. [Google Scholar]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbial. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Heyler, K.; Tekippe, J.A.; Varga, G.A.; Cori, B.; Brandt, R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Tekippe, J.A.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Zheljazkov, V.D.; Ferreira, J.F.S.; Karnati, S.K.; Varga, G.A. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. J. Dairy Sci. 2011, 94, 5065–5079. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J. Anim. Vet. Adv. 2011, 6, 416–428. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 2005, 83, 2572–2579. [Google Scholar] [PubMed]
- Lin, B.; Lu, Y.; Wang, J.H.; Liang, Q.; Liu, J.X. The effects of combined essential oils along with fumarate on rumen fermentation and methane production in vitro. J. Anim. Feed Sci. 2012, 21, 198–210. [Google Scholar]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carro, M.D.; Kamel, C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effect of plants containing secondary metabolites on in vitro methanogenesis, enzyme profile and fermentation of feed with rumen liquor of buffalo. Anim. Nutr. Feed Technol. 2006, 6, 203–213. [Google Scholar]
- Szumacher-Strabel, M.; Cieslak, A. Dietary possibilities to mitigate rumen methane and ammonia production. In Greenhouse Gases—Capturing, Utilization and Reduction; Intech: Rijeka, Croatia, 2012. [Google Scholar]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 2006, 89, 761–771. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A. Effect of essential oils active compounds on rumen microbial fermentation and nutrient flow in vitro systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef]
- McGuffey, R.K.; Richardson, L.F.; Wilkinson, J.I.D. Ionophores for dairy cattle: Current status and future outlook. J. Dairy Sci. 2001, 84, 194–203. [Google Scholar] [CrossRef]
- Mohammed, N.; Ajisaka, N.; Lila, Z.A.; Mikuni, K.; Hara, K.; Kanda, S.; Itabashi, H. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 2004, 82, 1839–1846. [Google Scholar] [PubMed]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Cardozo, P.W.; Kamel, C. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 2005, 88, 2508–2516. [Google Scholar] [CrossRef]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Ouellet, D.R.; Chiquette, J.; Chouinard, P.Y. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, S.P.; Zhou, H. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 2009, 148, 157–166. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobellis, G.; Petrozzi, A.; Forte, C.; Acuti, G.; Orrù, M.; Marcotullio, M.C.; Aquino, A.; Nicolini, A.; Mazza, V.; Trabalza-Marinucci, M. Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems. Sustainability 2015, 7, 12856-12869. https://doi.org/10.3390/su70912856
Cobellis G, Petrozzi A, Forte C, Acuti G, Orrù M, Marcotullio MC, Aquino A, Nicolini A, Mazza V, Trabalza-Marinucci M. Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems. Sustainability. 2015; 7(9):12856-12869. https://doi.org/10.3390/su70912856
Chicago/Turabian StyleCobellis, Gabriella, Alessandro Petrozzi, Claudio Forte, Gabriele Acuti, Mara Orrù, Maria Carla Marcotullio, Andrea Aquino, Andrea Nicolini, Valentina Mazza, and Massimo Trabalza-Marinucci. 2015. "Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems" Sustainability 7, no. 9: 12856-12869. https://doi.org/10.3390/su70912856
APA StyleCobellis, G., Petrozzi, A., Forte, C., Acuti, G., Orrù, M., Marcotullio, M. C., Aquino, A., Nicolini, A., Mazza, V., & Trabalza-Marinucci, M. (2015). Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems. Sustainability, 7(9), 12856-12869. https://doi.org/10.3390/su70912856